A127275 Expansion of (sqrt(1-4x)-x)/(1-4x).
1, 1, 2, 4, 6, -4, -100, -664, -3514, -16916, -77388, -343144, -1490148, -6376616, -26992264, -113317936, -472661434, -1961361076, -8104733884, -33374212936, -137031378124, -561253753336, -2293947547384, -9358755316816, -38121140494564, -155064370272904
Offset: 0
Examples
A(x) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 - 4*x^5 - 100*x^6 - 664*x^7 + ...
Links
- Robert Israel, Table of n, a(n) for n = 0..1653
Programs
-
Maple
S:= series((sqrt(1-4*x)-x)/(1-4*x),x,31): seq(coeff(S,x,i),i=0..30); # Robert Israel, Jan 15 2023
-
PARI
{a(n)=local(k=2,x=X+X^3*O(X^n));polcoeff( x*((1-k+k^2)-k^2*(k+1)*x-k*(1-(k+2)*x)*(1-sqrt(1-4*x))/2/x)/(1-k+k^2*x)^2,n,X)}
Formula
a(n) = C(2n,n) - 4^(n-1) + 0^n/4. - Paul Barry, Jan 10 2007
Conjecture: n*a(n) + 2*(-4*n+3)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 26 2012
Conjecture verified using the differential equation (4*x-1)^2 * g'(x) + (8*x-2)*g(x) + 1 - 2*x = 0 satisfied by the g.f. - Robert Israel, Jan 15 2023
Extensions
Definition revised by Paul Barry, Jan 10 2007
Comments