cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127359 a(n) = Sum_{k=0..n} binomial(n, floor(k/2))*3^(n-k).

Original entry on oeis.org

1, 4, 14, 48, 162, 544, 1820, 6080, 20290, 67680, 225684, 752448, 2508468, 8362176, 27875064, 92919168, 309734850, 1032458080, 3441543140, 11471842880, 38239537852, 127465249344, 424884399624, 1416281802368, 4720940242612, 15736469278144, 52454901060680
Offset: 0

Views

Author

Paul Barry, Jan 11 2007

Keywords

Comments

Hankel transform is (-2)^n. In general, given r>=0, the sequence given by Sum_{k=0..n} C(n,floor(k/2))*r^(n-k) has Hankel transform (1-r)^n. The sequence is the image of the sequence with g.f. (1+x)/(1-3x) under the Chebyshev mapping g(x)->(1/sqrt(1-4x^2))*g(xc(x^2)), where c(x) is the g.f. of the Catalan numbers A000108.

Crossrefs

Cf. A107430. - Philippe Deléham, Sep 16 2009
Cf. A000108 (Catalan numbers).

Programs

  • GAP
    a:=[1, 4, 14];; for n in [4..30] do a[n]:=(2*(5*n-2)*a[n-1] +4*(3*n-14)*a[n-2] -40*(n-3)*a[n-3])/(3*(n-1)); od; a; # G. C. Greubel, Dec 15 2019
  • Magma
    I:=[1, 4, 14]; [n le 3 select I[n] else (2*(5*n-2)*Self(n-1) + 4*(3*n - 14)*Self(n-2) -40*(n-3)*Self(n-3))/(3*(n-1)): n in [1..30]]; // G. C. Greubel, Dec 15 2019
    
  • Maple
    A127359:=n->sum(binomial(n,floor(k/2))*3^(n-k), k=0..n): seq(A127359(n), n=0..30); # Wesley Ivan Hurt, Mar 14 2015
  • Mathematica
    Table[Sum[Binomial[n, Floor[k/2]]*3^(n-k), {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Oct 19 2012 *)
  • PARI
    a(n) = sum(j=0, n, binomial(n, j\2)*3^(n-j));
    vector(31, n, a(n-1)) \\ G. C. Greubel, Dec 15 2019
    
  • Sage
    [sum(binomial(n, floor(j/2))*3^(n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Dec 15 2019
    

Formula

G.f.: (1/sqrt(1-4*x^2))*(1+x*c(x^2))/(1-3*x*c(x^2)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x).
a(n) = Sum_{k=0..n} A061554(n,k)*3^k. - Philippe Deléham, Dec 04 2009
Recurrence: 3*n*a(n) = 2*(5*n + 3)*a(n-1) + 4*(3*n - 11)*a(n-2) - 40*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 4*10^n/3^(n+1). - Vaclav Kotesovec, Oct 19 2012