A127407 Negative value of coefficient of x^(n-2) in the characteristic polynomial of a certain n X n integer circulant matrix.
3, 15, 44, 100, 195, 343, 560, 864, 1275, 1815, 2508, 3380, 4459, 5775, 7360, 9248, 11475, 14079, 17100, 20580, 24563, 29095, 34224, 40000, 46475, 53703, 61740, 70644, 80475, 91295, 103168, 116160, 130339, 145775, 162540, 180708, 200355
Offset: 2
Examples
The circulant matrix for n = 5 is [1 2 3 4 5] [5 1 2 3 4] [4 5 1 2 3] [3 4 5 1 2] [2 3 4 5 1] The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-2) is -100, hence a(5) = 100.
References
- Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-2) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
-
Magma
[ (n-1) * n^2 * (n+7) / (2 * Factorial(3)) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
-
Octave
n * (n+1)^2 * (n+8) / (2 * factorial(3)); % Paul Max Payton, Jan 14 2007
-
PARI
a(n) = {-polcoeff(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-2)} \\ Klaus Brockhaus, Jan 27 2007
-
PARI
a(n) = {(n^4+6*n^3-7*n^2)/(2*3!)} \\ Klaus Brockhaus, Jan 27 2007
Formula
a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1.
a(n) = ((n-1)^4+10*(n-1)^3+17*(n-1)^2+8*(n-1))/(2*3!) for n>=2.
a(n) = (n^2*(-7+6*n+n^2))/12. G.f.: x^2*(3-x^2)/(1-x)^5. - Colin Barker, May 13 2012
Extensions
Edited by Klaus Brockhaus, Jan 27 2007
Comments