cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127407 Negative value of coefficient of x^(n-2) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

3, 15, 44, 100, 195, 343, 560, 864, 1275, 1815, 2508, 3380, 4459, 5775, 7360, 9248, 11475, 14079, 17100, 20580, 24563, 29095, 34224, 40000, 46475, 53703, 61740, 70644, 80475, 91295, 103168, 116160, 130339, 145775, 162540, 180708, 200355
Offset: 2

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-2) exists only for n>1, so the sequence starts with a(2). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>1) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-2) is -100, hence a(5) = 100.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127408, A127409, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-2) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-1) * n^2 * (n+7) / (2 * Factorial(3)) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1)^2 * (n+8) / (2 * factorial(3)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoeff(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-2)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(n^4+6*n^3-7*n^2)/(2*3!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1.
a(n) = ((n-1)^4+10*(n-1)^3+17*(n-1)^2+8*(n-1))/(2*3!) for n>=2.
a(n) = (n^2*(-7+6*n+n^2))/12. G.f.: x^2*(3-x^2)/(1-x)^5. - Colin Barker, May 13 2012

Extensions

Edited by Klaus Brockhaus, Jan 27 2007