cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127419 Recurrence: a(n) = a(n-1) + floor( (sqrt(8 * a(n-1) - 7) - 1)/2 ) for n>=2 with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 15, 19, 24, 30, 37, 45, 53, 62, 72, 83, 95, 108, 122, 137, 153, 169, 186, 204, 223, 243, 264, 286, 309, 333, 358, 384, 411, 439, 468, 498, 529, 561, 593, 626, 660, 695, 731, 768, 806, 845, 885, 926, 968, 1011, 1055, 1100, 1146, 1193, 1241
Offset: 0

Views

Author

Paul D. Hanna, Jan 13 2007

Keywords

Examples

			floor( (sqrt(8 * a(n) - 7) - 1)/2 ) = A103354(n) for n>=0:
[0,1,1,2,2,3,4,4,5,6,7,8,8,9,10,11,12,13,14,15,16,16,17,...];
i.e. the nonnegative integers with powers of 2 repeated.
G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + ...
G.f.: A(x) = (1-x+x^3)/(1-x)^3 - x^3/(1-x)^2 * B(x) where B(x) = 1 + x^2 + x^5 + x^10 + x^19 + x^36 + x^69 +...+ x^(2^n+n-1) +...
		

Crossrefs

Cf. A103354.

Programs

  • Mathematica
    Join[{1},NestList[#+Floor[(Sqrt[8#-7]-1)/2]&,2,60]] (* Harvey P. Dale, May 26 2023 *)
  • PARI
    /* Using G.f.: */
    {a(n)=local(x=X+X*O(X^n)); polcoeff((1-x+x^3)/(1-x)^3 - x^3/(1-x)^2*(sum(k=0,#binary(n),x^(2^k+k-1))),n,X)}
    
  • PARI
    /* Using Recurrence: */
    {a(n)=if(n==0,1,if(n==1,2,a(n-1)+(sqrtint(8*a(n-1)-7)-1)\2))}

Formula

G.f.: A(x) = (1-x+x^3)/(1-x)^3 - x^3/(1-x)^2 * Sum_{k>=0} x^(2^k + k-1).
a(n) satisfies: floor((sqrt(8*a(n) - 7) - 1)/2) = A103354(n) for n>=1, where A103354 = floor(x), where x is the solution to x = 2^(n-x).