A127438 Minimal nonnegative solution to 2^x == 3 (mod p) where p goes over primes for which such a solution exists (A001915).
0, 3, 8, 4, 13, 8, 5, 26, 19, 17, 50, 6, 39, 16, 72, 19, 69, 70, 72, 41, 87, 101, 48, 27, 108, 56, 89, 42, 181, 43, 46, 48, 83, 109, 157, 93, 92, 56, 249, 152, 26, 69, 238, 137, 184, 271, 11, 100, 404, 13, 318, 111, 450, 25, 320, 151, 130, 9, 297, 104, 429, 435, 530, 105, 478, 175, 114, 75, 175, 80
Offset: 1
Keywords
Crossrefs
Cf. A001915.
Programs
-
Magma
lst:=[0]; for p in [5..647 by 2] do if IsPrime(p) then e:=Ceiling(Log(2, p+1)); for x in [e..p-2] do if 2^x mod p eq 3 then Append(~lst, x); break; end if; end for; end if; end for; lst; // Arkadiusz Wesolowski, Jan 12 2021
Formula
2^a(n) == 3 (mod A001915(n)), where a(n) >= 0 and minimum possible.
Extensions
Corrected by Max Alekseyev, Jun 08 2011
Corrected by Arkadiusz Wesolowski, Jan 12 2021