cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127531 Number of jumps in all binary trees with n edges.

Original entry on oeis.org

0, 0, 2, 13, 64, 285, 1210, 5005, 20384, 82212, 329460, 1314610, 5230016, 20764055, 82317690, 326012925, 1290244800, 5103910680, 20183646780, 79802261190, 315492902400, 1247247742650, 4930910180196, 19495286167698, 77085553829824, 304836321995800, 1205640294021800
Offset: 1

Views

Author

Emeric Deutsch, Jan 18 2007

Keywords

Comments

In the preorder traversal of a binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump.

Crossrefs

Cf. A127530.

Programs

  • GAP
    List([1..30], n-> Binomial(2*n,n-2) -Binomial(2*n-2,n-2)); # G. C. Greubel, May 08 2019
  • Magma
    [Binomial(2*n, n-2) - Binomial(2*n - 2, n-2): n in [1..30]]; // Vincenzo Librandi, Dec 20 2015
    
  • Magma
    [Binomial(2*n,n-2) -Binomial(2*n-2,n-2): n in [1..30]]; // G. C. Greubel, May 08 2019
    
  • Maple
    seq(binomial(2*n,n-2)-binomial(2*n-2,n-2),n=1..28);
  • Mathematica
    Table[Binomial[2n, n-2] - Binomial[2n-2, n-2], {n, 30}] (* or *) Table[4^(n-1)(n-1)(3n^2 -5n-2)Gamma[n-1/2]/(Sqrt[Pi]Gamma[n+3]), {n,30}] (* Michael De Vlieger, Dec 19 2015 *)
  • PARI
    vector(30, n, binomial(2*n,n-2) -binomial(2*n-2,n-2) ) \\ G. C. Greubel, Mar 19 2017
    
  • Sage
    [binomial(2*n,n-2) -binomial(2*n-2,n-2) for n in (1..30)] # G. C. Greubel, May 08 2019
    

Formula

a(n) = Sum_{k>=0} k*A127530(n,k).
a(n) = binomial(2*n, n-2) - binomial(2*n - 2, n-2).
From Peter Luschny, Dec 19 2015: (Start)
a(n) = 4^(n-1)*(n-1)*(3*n^2-5*n-2)*Gamma(n-1/2)/(sqrt(Pi)*Gamma(n+3)).
a(n) ~ 4^n*(3-139/(8*n)+8595/(128*n^2)-234745/(1024*n^3)+24282657/(32768*n^4)) /sqrt(n*Pi). (End)
D-finite with recurrence -5*(n+2)*(n-3)*a(n) +(19*n^2-26*n-5)*a(n-1) +2*(n-2)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Jul 26 2022
D-finite with recurrence +(n-3)*(3*n-2)*(n+2)*a(n) -2*(n-1)*(3*n+1)*(2*n-3)*a(n-1)=0. - R. J. Mathar, Jul 26 2022