A127561 Array T(n,k) = n^2+5*n*k+5*k^2 read downwards antidiagonals, n,k>=0.
0, 5, 1, 20, 11, 4, 45, 31, 19, 9, 80, 61, 44, 29, 16, 125, 101, 79, 59, 41, 25, 180, 151, 124, 99, 76, 55, 36, 245, 211, 179, 149, 121, 95, 71, 49, 320, 281, 244, 209, 176, 145, 116, 89, 64, 405, 361, 319, 279, 241, 205, 171, 139, 109, 81, 500, 451, 404, 359, 316, 275, 236, 199, 164, 131
Offset: 0
Examples
T(0,1) = 5 because (0+2*1)^2 + 1*(0+2*1) - 1^2 = 5 and also because the Fibonacci sequence having the Horadam ID {a,b,1,1} with a = 0+2*1 and b = 1 has the characteristic value a^2 + b*a - b^2. 0, 5, 20, 45, 80,125,180,245,320,405,500,... A033429 1, 11, 31, 61,101,151,211,281,361,451,551,.. A062786 4, 19, 44, 79,124,179,244,319,404,499,604,.. A134538 9, 29, 59, 99,149,209,279,359,449,549,659,... A143198 (row 9) 16, 41, 76,121,176,241,316,401,496,601,716,... 25, 55, 95,145,205,275,355,445,545,655,775,.. 36, 71,116,171,236,311,396,491,596,711,836,... 49, 89,139,199,269,349,439,539,649,769,899,... 64,109,164,229,304,389,484,589,704,829,964,... 81,131,191,261,341,431,531,641,761,891,1031,... 100,155,220,295,380,475,580,695,820,955,1100,...
Links
- K. J. Ramsey, Wythoff Array, Pythagorean triples, Primes
Formula
T(a,b) = (a+2b)^2 + b(a+2b) - b^2.
Comments