cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127595 a(n) = F(4n) - 2F(2n) where F(n) = Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 15, 128, 945, 6655, 46080, 317057, 2176335, 14925184, 102320625, 701373311, 4807434240, 32951037313, 225850798095, 1548007091840, 10610205501105, 72723448842367, 498453982018560, 3416454544730369, 23416728143799375
Offset: 0

Views

Author

Peter Bala, Apr 10 2007

Keywords

Comments

a(n) is a divisibility sequence; that is, if h|k then a(h)|a(k).

Examples

			G.f. = x + 15*x^2 + 128*x^3 + 945*x^4 + 6655*x^5 + ... - _Michael Somos_, Dec 30 2022
		

Crossrefs

Programs

  • Mathematica
    With[{r = 3}, CoefficientList[Series[x (1 + (r + 2) x + x^2)/((1 - r x + x^2)*(1 - (r^2 - 2)*x + x^2)), {x, 0, 20}], x]] (* Michael De Vlieger, Nov 09 2021 *)
  • PARI
    {a(n) = my(w = quadgen(5)^(2*n)); imag(w^2 - 2*w)}; /* Michael Somos, Dec 30 2022 */

Formula

a(n) = F(2n)*(L(2n)-2) = A001906(n)*A004146(n), where L(n) are the Lucas numbers A000032.
a(2n) = 5*(F(2n))^3*L(2n), a(2n+1) = F(2n+1)*L(2n+1)^3.
a(n) = [(Phi^(2n))-1]^2*[(Phi^(4n))-1]/[sqrt(5)*(Phi^(4n))].
G.f.: A(x)=x*(1+(r+2)*x+x^2)/((1-r*x+x^2)*(1-(r^2-2)*x+x^2)) at r=3. The case r=2 is A000578.
a(n) = -a(-n) for all n in Z. - Michael Somos, Dec 30 2022