cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127596 Numbers k such that 1 + Sum_{i=1..k-1} A001223(i)*(-1)^i = 0.

Original entry on oeis.org

2, 4, 14, 22, 28, 233, 249, 261, 488, 497, 511, 515, 519, 526, 531, 534, 548, 562, 620, 633, 635, 2985, 3119, 3123, 3128, 3157, 4350, 4358, 4392, 4438, 4474, 4484, 4606, 4610, 4759, 5191, 12493, 1761067, 2785124, 2785152, 2785718, 2785729, 2867471
Offset: 1

Views

Author

Manuel Valdivia, Apr 03 2007

Keywords

Comments

Or, with prime(0) = 1, numbers k such that Sum_{i=0..k-1} (prime(i+1)-prime(i))*(-1)^i = Sum_{i=0..k-1} (A008578(i+1)-A008578(i))*(-1)^i = 0.
There are 313 terms < 10^7, 846 terms < 10^8, 1161 terms < 10^9.

Examples

			1 - A001223(1) = 1 - 1 = 0, hence 2 is a term.
1 - A001223(1) + A001223(2) - A001223(3) = 1 - 1 + 2 - 2 = 0, hence 4 is a term.
		

Crossrefs

Cf. A001223 (differences between consecutive primes), A008578 (prime numbers at the beginning of the 20th century), A000101 (increasing gaps between primes, upper end), A002386 (increasing gaps between primes, lower end).
Cf. A282178 (prime(a(n))), A330545, A330547.

Programs

  • Mathematica
    S=0; Do[j=Prime[n+1]; i=Prime[n]; d[n]=j-i; S=S+(d[n]*(-1)^n); If[S+1==0, Print[Table[j|PrimePi[j]|S+1]]], {n,1,10^7,1}]
  • PARI
    {m=10^8; n=1; p=1; e=1; s=0; while(nKlaus Brockhaus, Apr 29 2007 */

Extensions

Edited by Klaus Brockhaus, Apr 29 2007