A127596 Numbers k such that 1 + Sum_{i=1..k-1} A001223(i)*(-1)^i = 0.
2, 4, 14, 22, 28, 233, 249, 261, 488, 497, 511, 515, 519, 526, 531, 534, 548, 562, 620, 633, 635, 2985, 3119, 3123, 3128, 3157, 4350, 4358, 4392, 4438, 4474, 4484, 4606, 4610, 4759, 5191, 12493, 1761067, 2785124, 2785152, 2785718, 2785729, 2867471
Offset: 1
Keywords
Examples
1 - A001223(1) = 1 - 1 = 0, hence 2 is a term. 1 - A001223(1) + A001223(2) - A001223(3) = 1 - 1 + 2 - 2 = 0, hence 4 is a term.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1161 (first 846 terms from Klaus Brockhaus)
- Eric Weisstein's World of Mathematics, Andrica's Conjecture
- Eric Weisstein's World of Mathematics, Prime Difference Function
Crossrefs
Programs
-
Mathematica
S=0; Do[j=Prime[n+1]; i=Prime[n]; d[n]=j-i; S=S+(d[n]*(-1)^n); If[S+1==0, Print[Table[j|PrimePi[j]|S+1]]], {n,1,10^7,1}]
-
PARI
{m=10^8; n=1; p=1; e=1; s=0; while(n
Klaus Brockhaus, Apr 29 2007 */
Extensions
Edited by Klaus Brockhaus, Apr 29 2007
Comments