A127597 Least number k such that k 4^n + (4^n-1)/3 is prime.
2, 1, 0, 2, 3, 2, 4, 4, 3, 10, 3, 3, 2, 7, 2, 25, 6, 17, 4, 13, 3, 20, 36, 20, 11, 27, 66, 23, 39, 24, 19, 13, 3, 10, 6, 122, 71, 58, 24, 13, 3, 2, 41, 10, 6, 32, 58, 17, 4, 79, 26, 55, 36, 48, 31, 28, 9, 2, 76, 24, 32, 28, 63, 20, 37, 9, 2, 7, 39, 10, 91, 47
Offset: 0
Keywords
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..2391
Crossrefs
Programs
-
Mathematica
a = {}; Do[k = 0; While[ !PrimeQ[k 4^n + (4^n - 1)/3], k++ ]; AppendTo[a, k], {n, 0, 50}]; a (*Artur Jasinski*) lnk[n_]:=Module[{k=0,n4=4^n},While[!PrimeQ[k*n4+(n4-1)/3],k++];k]; Array[ lnk,60,0] (* Harvey P. Dale, May 28 2018 *)
-
Python
from sympy import isprime def a(n): k, fourn = 0, 4**n while not isprime(k*fourn + (fourn-1)//3): k += 1 return k print([a(n) for n in range(72)]) # Michael S. Branicky, May 18 2022
Extensions
Offset corrected and a(51) and beyond from Michael S. Branicky, May 18 2022