A127624 An 11th-order Fibonacci sequence: a(n) = a(n-1) + ... + a(n-11).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 21, 41, 81, 161, 321, 641, 1281, 2561, 5121, 10241, 20481, 40951, 81881, 163721, 327361, 654561, 1308801, 2616961, 5232641, 10462721, 20920321, 41830401, 83640321, 167239691, 334397501, 668631281
Offset: 1
Links
- Robert Price, Table of n, a(n) for n = 1..1000
- E. S. Croot, Notes on Linear Recurrence Sequences
- M. A. Lerma, Recurrence Relations
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1,1,1).
Crossrefs
Programs
-
Mathematica
Module[{nn=11,lr},lr=PadRight[{},nn,1];LinearRecurrence[lr,lr,20]] (* Harvey P. Dale, Feb 04 2015 *)
-
PARI
x='x+O('x^50); Vec(x*(-1+x^2+2*x^3+3*x^4+4*x^5+5*x^6+6*x^7+7*x^8 +8*x^9+9*x^10)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11)) \\ G. C. Greubel, Jul 28 2017
Formula
O.g.f: x*(-1+x^2+2*x^3+3*x^4+4*x^5+5*x^6+6*x^7+7*x^8+8*x^9+9*x^10) / (-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11). - R. J. Mathar, Dec 02 2007
Extensions
Edited by Dean Hickerson, Mar 09 2007
Comments