cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127631 Square of Riordan array (1, x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 21, 16, 6, 1, 0, 80, 66, 30, 8, 1, 0, 322, 280, 143, 48, 10, 1, 0, 1348, 1216, 672, 260, 70, 12, 1, 0, 5814, 5385, 3150, 1344, 425, 96, 14, 1, 0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1
Offset: 0

Views

Author

Paul Barry, Jan 20 2007

Keywords

Comments

Square of A106566. Row sums are A127632.

Examples

			Triangle begins
  1;
  0,      1;
  0,      2,      1;
  0,      6,      4,     1;
  0,     21,     16,     6,     1;
  0,     80,     66,    30,     8,     1;
  0,    322,    280,   143,    48,    10,    1;
  0,   1348,   1216,   672,   260,    70,   12,   1;
  0,   5814,   5385,  3150,  1344,   425,   96,  14,   1;
  0,  25674,  24244, 14799,  6784,  2400,  646, 126,  16,  1;
  0, 115566, 110704, 69828, 33814, 13002, 3960, 931, 160, 18, 1;
		

Crossrefs

Programs

  • Magma
    [[k eq n select 1 else (k/n)*(&+[Binomial(2*j+k-1,j)*Binomial(2*n -k-j-1, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
    
  • Mathematica
    T[n_, k_]:= If[k==n, 1, (k/n)*Sum[Binomial[2*j-k-1, j-k]*Binomial[2*n-j- 1, n-j], {j,k,n}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
  • Maxima
    T(n,k):=if k=n then 1 else if n=0 then 0 else (k*sum((binomial(-k+2*i-1,i-k))*(binomial(2*n-i-1,n-i)),i,k,n))/n; /* Vladimir Kruchinin, Apr 05 2019 */
    
  • PARI
    {T(n,k) = if(k==n, 1, (k/n)*sum(j=0,n-k, binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j)))}; \\ G. C. Greubel, Apr 05 2019
    
  • Sage
    def T(n, k):
       if k == n: return 1
       return (k*sum(binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j) for j in (0..n-k)))//n
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019

Formula

Riordan array (1, x*c(x)*c(x*c(x))), where c(x) is the g.f. of A000108.
T(n+1,1) = A129442(n) = A121988(n+1). - Philippe Deléham, Feb 27 2013
T(n,k) = (k/n)*Sum_{i=k..n} C(2*i-k-1,i-k)*C(2*n-i-1,n-i), T(n,n)=1. - Vladimir Kruchinin, Apr 05 2019