A127631 Square of Riordan array (1, x*c(x)) where c(x) is the g.f. of A000108.
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 21, 16, 6, 1, 0, 80, 66, 30, 8, 1, 0, 322, 280, 143, 48, 10, 1, 0, 1348, 1216, 672, 260, 70, 12, 1, 0, 5814, 5385, 3150, 1344, 425, 96, 14, 1, 0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 0, 2, 1; 0, 6, 4, 1; 0, 21, 16, 6, 1; 0, 80, 66, 30, 8, 1; 0, 322, 280, 143, 48, 10, 1; 0, 1348, 1216, 672, 260, 70, 12, 1; 0, 5814, 5385, 3150, 1344, 425, 96, 14, 1; 0, 25674, 24244, 14799, 6784, 2400, 646, 126, 16, 1; 0, 115566, 110704, 69828, 33814, 13002, 3960, 931, 160, 18, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[[k eq n select 1 else (k/n)*(&+[Binomial(2*j+k-1,j)*Binomial(2*n -k-j-1, n-k-j): j in [0..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 05 2019
-
Mathematica
T[n_, k_]:= If[k==n, 1, (k/n)*Sum[Binomial[2*j-k-1, j-k]*Binomial[2*n-j- 1, n-j], {j,k,n}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 05 2019 *)
-
Maxima
T(n,k):=if k=n then 1 else if n=0 then 0 else (k*sum((binomial(-k+2*i-1,i-k))*(binomial(2*n-i-1,n-i)),i,k,n))/n; /* Vladimir Kruchinin, Apr 05 2019 */
-
PARI
{T(n,k) = if(k==n, 1, (k/n)*sum(j=0,n-k, binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j)))}; \\ G. C. Greubel, Apr 05 2019
-
Sage
def T(n, k): if k == n: return 1 return (k*sum(binomial(2*j+k-1, j)* binomial(2*n-k-j-1, n-k-j) for j in (0..n-k)))//n [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 05 2019
Formula
Riordan array (1, x*c(x)*c(x*c(x))), where c(x) is the g.f. of A000108.
T(n,k) = (k/n)*Sum_{i=k..n} C(2*i-k-1,i-k)*C(2*n-i-1,n-i), T(n,n)=1. - Vladimir Kruchinin, Apr 05 2019
Comments