cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127634 a(n) = 3^(n-1) - ceiling(n^n/n!).

Original entry on oeis.org

0, 1, 4, 16, 54, 178, 565, 1770, 5493, 16927, 51901, 158533, 482802, 1466859, 4448104, 13467249, 40720970, 122994566, 371156622, 1119161662, 3372427789, 10156591942, 30573367574, 91993546765, 276703494365, 832023918335, 2501142914874, 7516883840470
Offset: 1

Views

Author

N. J. A. Sloane, Apr 03 2007

Keywords

Comments

Theorem: 3^(n-1) > n^n/n! for n >= 3.

References

  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 193, 3.1.21.

Crossrefs

Programs

  • Magma
    [3^(n-1)-Ceiling(n^n/Factorial(n)): n in [1..30]]; // Vincenzo Librandi, Jul 06 2017
  • Maple
    seq(3^(n-1)-ceil(n^n/n!),n=1..50); # Robert Israel, Jul 06 2017
  • Mathematica
    Table[3^(n-1) - Ceiling[n^n / n!], {n, 30}] (* Vincenzo Librandi, Jul 06 2017 *)
  • PARI
    a(n) = 3^(n-1) - ceil(n^n/n!); \\ Michel Marcus, Jul 06 2017