cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127640 Triangle read by rows in which row n contains n-1 0's followed by prime(n).

Original entry on oeis.org

2, 0, 3, 0, 0, 5, 0, 0, 0, 7, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 21 2007

Keywords

Comments

A127641 = this sequence * A051731.

Examples

			First few rows of the triangle are:
2;
0, 3
0, 0, 5;
0, 0, 0, 7;
0, 0, 0, 0, 11;
...
		

Crossrefs

Programs

  • Maple
    A127640 := proc(n,m) if m < n then 0; else ithprime(n) ; fi ; end: for n from 1 to 15 do for m from 1 to n do printf("%d,",A127640(n,m)) ; od ; od ; # R. J. Mathar, May 19 2007
  • Mathematica
    Table[PadLeft[{Prime[n]},n,0],{n,15}]//Flatten (* Harvey P. Dale, Feb 28 2025 *)

Extensions

More terms from R. J. Mathar, May 19 2007

A127638 A054525 * A127640, where A127640 = infinite lower triangular matrix with the sequence of primes in the main diagonal and the rest zeros.

Original entry on oeis.org

2, -2, 3, -2, 0, 5, 0, -3, 0, 7, -2, 0, 0, 0, 11, 2, -3, -5, 0, 0, 13, -2, 0, 0, 0, 0, 0, 17, 0, 0, 0, -7, 0, 0, 0, 19, 0, 0, -5, 0, 0, 0, 0, 0, 23, 2, -3, 0, 0, -11, 0, 0, 0, 0, 29, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 0, 3, 0, -7, 0, -13, 0, 0, 0, 0, 0, 37, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 2, -3, 0, 0, 0, 0, -17, 0, 0, 0, 0, 0, 0, 43, 2, 0, -5, 0, -11, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 21 2007

Keywords

Comments

Right diagonal = primes: (2, 3, 5, 7, ...). Row sums = the Mobius transform of primes, A007444: (2, 1, 3, 4, 9, 7, ...).

Examples

			First few rows of the triangle:
   2;
  -2,  3;
  -2,  0,  5;
   0, -3,  0, 7;
  -2,  0,  0, 0, 11;
   2, -3, -5, 0,  0, 13;
  ...
		

Crossrefs

Programs

  • Maple
    A054525 := proc(n,k) if n mod k = 0 then numtheory[mobius](n/k) ; else 0 ; fi ; end: A127648 := proc(n,k) A054525(n,k)*ithprime(k) ; end: for n from 1 to 16 do for k from 1 to n do printf("%d,", A127648(n,k)) ; od ; od ; # R. J. Mathar, Mar 14 2007

Extensions

More terms from R. J. Mathar, Mar 14 2007

A127641 A127640 * A051731 as infinite lower triangular matrices.

Original entry on oeis.org

2, 3, 3, 5, 0, 5, 7, 7, 0, 7, 11, 0, 0, 0, 11, 13, 13, 13, 0, 0, 13, 17, 0, 0, 0, 0, 0, 17, 19, 19, 0, 19, 0, 0, 0, 19, 23, 0, 23, 0, 0, 0, 0, 0, 23, 29, 29, 0, 0, 29, 0, 0, 0, 0, 29, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 37, 37, 37, 37, 0, 37, 0, 0, 0, 0, 0, 37, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41
Offset: 1

Views

Author

Gary W. Adamson, Jan 21 2007

Keywords

Comments

A prime transform of A051731.

Examples

			First few rows of the triangle are:
2;
3, 3;
5, 0, 5;
7, 7, 0, 7;
11, 0, 0, 0, 11;
13, 13, 13, 0, 0, 13;
...
		

Crossrefs

Programs

  • Maple
    A127640 := proc(n,m) if m < n then 0; else ithprime(n) ; fi ; end: A051731 := proc(n,k) if n mod k = 0 then 1 ; else 0 ; fi ; end: A127641 := proc(n,m) add( A127640(n,k)*A051731(k,m),k=1..n) ; end: for n from 1 to 15 do for m from 1 to n do printf("%d,",A127641(n,m)) ; od ; od ; # R. J. Mathar, May 19 2007

Extensions

More terms from R. J. Mathar, May 19 2007

A125518 a(n) = tau(n) * prime(n).

Original entry on oeis.org

2, 6, 10, 21, 22, 52, 34, 76, 69, 116, 62, 222, 82, 172, 188, 265, 118, 366, 134, 426, 292, 316, 166, 712, 291, 404, 412, 642, 218, 904, 254, 786, 548, 556, 596, 1359, 314, 652, 668, 1384, 358, 1448, 382, 1158, 1182, 796, 422, 2230, 681, 1374, 932, 1434, 482
Offset: 1

Views

Author

Gary W. Adamson, Jan 21 2007

Keywords

Crossrefs

Row sums of A127641.
Cf. A000005 (tau), A000040 (prime).

Programs

  • Mathematica
    Table[DivisorSigma[0,n]Prime[n],{n,60}] (* Harvey P. Dale, Feb 19 2021 *)
  • PARI
    a(n) = numdiv(n) * prime(n); \\ Andrew Howroyd, Aug 09 2018

Extensions

Name changed and terms a(15) and beyond from Andrew Howroyd, Aug 09 2018
Showing 1-4 of 4 results.