cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127643 Composite numbers k that divide A123591(k) = ((2^k - 1)^(2^k) - 1)/(2^k)^2.

Original entry on oeis.org

15, 51, 65, 85, 185, 221, 255, 341, 451, 533, 561, 595, 645, 679, 771, 1059, 1095, 1105, 1271, 1285, 1313, 1387, 1455, 1581, 1729, 1905, 2045, 2047, 2091, 2307, 2465, 2701, 2755, 2821, 2895, 3201, 3205, 3277, 3281, 3341, 3603, 3655, 3723, 3855, 4033, 4039
Offset: 1

Views

Author

Alexander Adamchuk, Jan 22 2007

Keywords

Comments

p divides A123591(p) for prime p > 2.
Odd composite numbers k such that (2^k-1)^(2^k) == 1 (mod k). - Robert Israel, Jul 06 2017

Crossrefs

Programs

  • Maple
    select(n -> not isprime(n) and (2^n-1) &^ (2^n) mod n = 1, [seq(i,i=9..10000,2)]); # Robert Israel, Jul 06 2017
  • Mathematica
    Do[f=PowerMod[(2^n-1),(2^n),n]-1;If[ !PrimeQ[n]&&IntegerQ[(n+1)/2]&&IntegerQ[f/n],Print[n]],{n,2,10000}]