A127663 Infinitary aspiring numbers.
30, 42, 54, 66, 72, 78, 100, 140, 148, 152, 192, 194, 196, 208, 220, 238, 244, 252, 268, 274, 292, 296, 298, 300, 336, 348, 350, 360, 364, 372, 374, 380, 382, 386, 400, 416, 420, 424, 476, 482, 492, 516, 520, 532, 540, 542, 544, 550, 572, 576, 578, 586, 592
Offset: 1
Examples
a(5) = 72 because the fifth non-infinitary perfect number whose infinitary aliquot sequence ends in an infinitary perfect number is 72.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..72
- Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp., 54 (1990), 395-411.
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
Programs
-
Mathematica
ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];InfinitaryPerfectNumberQ[0]=False;InfinitaryPerfectNumberQ[k_Integer] :=If[properinfinitarydivisorsum[k]==k,True,False];Select[Range[750],InfinitaryPerfectNumberQ[Last[iTrajectory[ # ]]] && !InfinitaryPerfectNumberQ[ # ]&] f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; s[n_] := Times @@ f @@@ FactorInteger[n] - n; s[0] = s[1] = 0; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, n != v[[-2]] == v[[-1]] > 0]; Select[Range[839], q] (* Amiram Eldar, Mar 11 2023 *)
Comments