A127709 Triangle T(n, d) = the number of isomorphism classes of smooth Fano d-polytopes with n vertices, read by rows (n >= 2, 1 <= d < n).
1, 0, 1, 0, 2, 1, 0, 1, 4, 1, 0, 1, 7, 9, 1, 0, 0, 4, 28, 15, 1, 0, 0, 2, 47, 91, 26, 1, 0, 0, 0, 27, 268, 257, 40, 1, 0, 0, 0, 10, 312, 1318, 643, 62, 1, 0, 0, 0, 1, 137, 2807, 5347, 1511, 91, 1, 0, 0, 0, 1, 35, 2204, 19516, 19453, 3331
Offset: 2
Examples
Table begins: n |d=1|d=2|d=3|d=4|d=5|d=6|d=7 1 | 2 | 1 | 3 | | 1 | 4 | | 2 | 1 | 5 | | 1 | 4 | 1 | 6 | | 1 | 7 | 9 | 1 | 7 | | | 4 | 28| 15| 1 | 8 | | | 2 | 47| 91| 26| 1 9 | | | | 27|268|257| 40
Links
- Mikkel Obro, An algorithm for the classification of smooth Fano polytopes, arXiv:0704.0049 [math.CO], Apr 02 2007, p. 15.
- Mikkel Ă˜bro, Classification of smooth Fano polytopes, PhD thesis, 2007. See Appendix A.
- Andreas Paffenholz, Smooth Reflexive Lattice Polytopes
Crossrefs
Column sums are A140296.
Extensions
Edited and leading zeroes in rows and few more values added by Andrey Zabolotskiy, Sep 19 2018