cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127752 Row sums of inverse of number triangle A(n,k) = 1/(3n+1) if k <= n <= 2k, 0 otherwise.

Original entry on oeis.org

1, 4, 3, 7, 3, 6, 3, 10, 3, 6, 3, 9, 3, 6, 3, 13, 3, 6, 3, 9, 3, 6, 3, 12, 3, 6, 3, 9, 3, 6, 3, 16, 3, 6, 3, 9, 3, 6, 3, 12, 3, 6, 3, 9, 3, 6, 3, 15, 3, 6, 3, 9, 3, 6, 3, 12, 3, 6, 3, 9, 3, 6, 3, 19, 3, 6, 3, 9, 3, 6, 3, 12, 3, 6, 3, 9, 3, 6, 3, 15, 3, 6, 3, 9, 3, 6, 3, 12, 3, 6, 3, 9, 3, 6, 3, 18, 3, 6, 3, 9, 3, 6, 3, 12, 3, 6
Offset: 0

Views

Author

Paul Barry, Jan 28 2007

Keywords

Comments

Row sums of number triangle A127751.
a(n) mod 2 is first Feigenbaum symbolic sequence A035263 (conjecture).
The conjecture is true at least up to 2048 first terms. (But please note the different indexing, here 0-based.) - Antti Karttunen, Sep 29 2018

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := If[k <= n <= 2k, 1/(3n+1), 0];
    Total /@ Inverse[Array[A, {128, 128}, {0, 0}]] (* Jean-François Alcover, Feb 11 2021 *)
  • PARI
    up_to = 128;
    A127752aux(n,k) = if(k<=n,if(n<=(2*k),1/((3*n)+1),0),0);
    A127752list(up_to) = { my(m1=matrix(up_to,up_to,n,k,A127752aux(n-1,k-1)), m2 = matsolve(m1,matid(up_to)), v = vector(up_to)); for(n=1,up_to,v[n] = vecsum(m2[n,])); (v); };
    v127752 = A127752list(1+up_to);
    A127752(n) = v127752[1+n]; \\ Antti Karttunen, Sep 29 2018

Extensions

More terms from Antti Karttunen, Sep 29 2018

A127749 Inverse of number triangle A(n,k) = 1/(2n+1) if k <= n <= 2k, 0 otherwise.

Original entry on oeis.org

1, 0, 3, 0, -3, 5, 0, 3, -5, 7, 0, 0, 0, -7, 9, 0, -3, 5, 0, -9, 11, 0, 0, 0, 0, 0, -11, 13, 0, 3, -5, 7, 0, 0, -13, 15, 0, 0, 0, 0, 0, 0, 0, -15, 17, 0, 0, 0, -7, 9, 0, 0, 0, -17, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21, 0, -3, 5
Offset: 0

Views

Author

Paul Barry, Jan 28 2007

Keywords

Comments

Conjectures: row sums modulo 2 are the Fredholm-Rueppel sequence A036987; row sums of triangle modulo 2 are A111982. Row sums are A127750.
The first conjecture is equivalent to the row sums conjecture in A111967. - R. J. Mathar, Apr 21 2021

Examples

			Triangle begins
  1;
  0,  3;
  0, -3,  5;
  0,  3, -5,  7;
  0,  0,  0, -7,  9;
  0, -3,  5,  0, -9,  11;
  0,  0,  0,  0,  0, -11,  13;
  0,  3, -5,  7,  0,   0, -13,  15;
  0,  0,  0,  0,  0,   0,   0, -15,  17;
  0,  0,  0, -7,  9,   0,   0,   0, -17,  19;
  0,  0,  0,  0,  0,   0,   0,   0,   0, -19,  21;
  0, -3,  5,  0, -9,  11,   0,   0,   0,   0, -21,  23;
  0,  0,  0,  0,  0,   0,   0,   0,   0,   0,   0, -23, 25;
Inverse of triangle
  1;
  0, 1/3;
  0, 1/5, 1/5;
  0,  0,  1/7, 1/7;
  0,  0,  1/9, 1/9,  1/9;
  0,  0,   0,  1/11, 1/11, 1/11;
  0,  0,   0,  1/13, 1/13, 1/13, 1/13;
  0,  0,   0,   0,   1/15, 1/15, 1/15, 1/15;
  0,  0,   0,   0,   1/17, 1/17, 1/17, 1/17, 1/17;
  0,  0,   0,   0,    0,   1/19, 1/19, 1/19, 1/19, 1/19;
  0,  0,   0,   0,    0,   1/21, 1/21, 1/21, 1/21, 1/21, 1/21;
		

Crossrefs

Cf. A111967.

Programs

  • Maple
    A127749 := proc(n,k)
        option remember ;
        if k > n then
            0 ;
        elif k = n then
            2*n+1 ;
        else
            -(2*k+1)*add( procname(n,i)/(2*i+1),i=k+1..min(n,2*k)) ;
        end if;
    end proc:
    seq(seq( A127749(n,k),k=0..n),n=0..20) ; # R. J. Mathar, Feb 09 2021
  • Mathematica
    nmax = 10;
    A[n_, k_] := If[k <= n <= 2k, 1/(2n+1), 0];
    invA = Inverse[Table[A[n, k], {n, 0, nmax}, {k, 0, nmax}]];
    T[n_, k_] := invA[[n+1, k+1]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 05 2020 *)

Formula

T(n,k) = (2*k+1)*A111967(n,k). - R. J. Mathar, Apr 21 2021
Showing 1-2 of 2 results.