A127803 Inverse of number triangle A(n,k) = 1/(2*2^n-1) if k <= n <= 2k, 0 otherwise.
1, 0, 3, 0, -3, 7, 0, 3, -7, 15, 0, 0, 0, -15, 31, 0, -3, 7, 0, -31, 63, 0, 0, 0, 0, 0, -63, 127, 0, 3, -7, 15, 0, 0, -127, 255, 0, 0, 0, 0, 0, 0, 0, -255, 511, 0, 0, 0, -15, 31, 0, 0, 0, -511, 1023, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1023, 2047
Offset: 0
Examples
Triangle begins 1; 0, 3; 0, -3, 7; 0, 3, -7, 15; 0, 0, 0, -15, 31; 0, -3, 7, 0, -31, 63; 0, 0, 0, 0, 0, -63, 127; 0, 3, -7, 15, 0, 0, -127, 255; 0, 0, 0, 0, 0, 0, 0, -255, 511; 0, 0, 0, -15, 31, 0, 0, 0, -511, 1023; 0, 0, 0, 0, 0, 0, 0, 0, 0, -1023, 2047; ... Inverse of 1; 0, 1/3; 0, 1/7, 1/7; 0, 0, 1/15, 1/15; 0, 0, 1/31, 1/31, 1/31; 0, 0, 0, 1/63, 1/63, 1/63; 0, 0, 0, 1/127, 1/127, 1/127, 1/127; 0, 0, 0, 0, 1/255, 1/255, 1/255, 1/255; 0, 0, 0, 0, 1/511, 1/511, 1/511, 1/511, 1/511; 0, 0, 0, 0, 0, 1/1023, 1/1023, 1/1023, 1/1023, 1/1023; 0, 0, 0, 0, 0, 1/2047, 1/2047, 1/2047, 1/2047, 1/2047, 1/2047; ...
Links
- Tilman Piesk, Illustration of first 32 rows
Crossrefs
Cf. A127804.
Programs
-
Maple
A127803 := proc(n,k) A := Matrix(n+1,n+1) ; for r from 0 to n do for c from 0 to n do if c <= r and r <= 2*c then A[r+1,c+1] := 1/(2*2^r-1) ; else A[r+1,c+1] := 0 ; end if; end do: end do: Ainv := LinearAlgebra[MatrixInverse](A) ; Ainv[n+1,k+1] ; end proc: seq(seq( A127803(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Feb 12 2024
-
Mathematica
rows = 11; A[n_, k_] := If[k <= n, If[n <= 2 k, 1/(2*2^n - 1), 0], 0]; T = Table[A[n, k], {n, 0, rows-1}, {k, 0, rows-1}] // Inverse; Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 03 2018 *)
-
PARI
B(n,k) = if(k<=n,if(n<=2*k,1/(2*2^n-1),0),0); lista(nn) = {my(m = matrix(nn, nn, n, k, B(n-1,k-1))^(-1)); for (n=1, nn, for (k=1, n, print1(m[n,k], ", ");); print(););} \\ Michel Marcus, Jul 03 2018
Comments