cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127816 a(n) = least k >= 1 such that the remainder when 6^k is divided by k is n.

Original entry on oeis.org

5, 34, 213, 68, 4021227877, 7, 121129, 14, 69, 26, 767, 51, 6191, 22, 201, 20, 1919, 33, 169, 44, 39, 1778, 1926049, 174, 2673413, 50, 63, 451, 1257243481237, 93, 851, 316, 183, 14809, 1969, 38, 1362959, 1826, 177, 289, 65, 87, 5567, 1252, 57, 1651, 6403249
Offset: 1

Views

Author

Alexander Adamchuk, Jan 30 2007, Feb 05 2007

Keywords

Comments

a(7^k-1) = 7^k.

Crossrefs

Programs

  • Mathematica
    t = Table[0, {10000}]; k = 1; lst = {}; While[k < 5600000000, a = PowerMod[6, k, k]; If[ a<10001 && t[[a]]==0, t[[a]]=k; Print[{a,k}]]; k++ ]; t

Formula

a(7^k-1) = 7^k.

Extensions

a(5) from Joe K. Crump confirmed and a(6)-a(28) added by Ryan Propper, Feb 21 2007
I combined the two Mathematica codings into one and extended the search limits. - Robert G. Wilson v, Jul 16 2009
a(29) as conjectured by J. K. Crump confirmed by Hagen von Eitzen, Jul 21 2009
Corrected authorship of the a-file - R. J. Mathar, Aug 24 2009