A127818 a(n) is the least k such that the remainder when 10^k is divided by k is n.
3, 14, 7, 6, 35, 94, 993, 46, 22963573117, 11, 15084115509707, 22, 21, 86, 99985, 24, 221819, 82, 327, 1996, 28039, 26, 169, 38, 39, 74, 24257, 36, 10191082613, 65, 49, 34, 4739, 66, 99965, 188, 171, 62, 3753219157, 60, 3961, 58, 87, 76, 28315, 159, 10441
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
t = Table[0, {10000} ]; k = 1; While[ k < 4000000000, a = PowerMod[10, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t
-
Python
def a(n): k = 1 while 10**k % k != n: k += 1 return k print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Mar 14 2021
Extensions
Crump's values for a(9), a(11), a(39) confirmed, a(29) = 10191082613 = 16763 * 607951 by Hagen von Eitzen, Jul 29 2009
Comments