A127824 Triangle in which row n is a sorted list of all numbers having total stopping time n in the Collatz (or 3x+1) iteration.
1, 2, 4, 8, 16, 5, 32, 10, 64, 3, 20, 21, 128, 6, 40, 42, 256, 12, 13, 80, 84, 85, 512, 24, 26, 160, 168, 170, 1024, 48, 52, 53, 320, 336, 340, 341, 2048, 17, 96, 104, 106, 113, 640, 672, 680, 682, 4096, 34, 35, 192, 208, 212, 213, 226, 227, 1280, 1344, 1360, 1364
Offset: 0
Examples
The triangle starts: 0: 1 1: 2 2: 4 3: 8 4: 16 5: 5 32 6: 10 64 7: 3 20 21 128 8: 6 40 42 256 9: 12 13 80 84 85 512 10: 24 26 160 168 170 1024 11: 48 52 53 320 336 340 341 2048 12: 17 96 104 106 113 640 672 680 682 4096 - _Reinhard Zumkeller_, Oct 03 2012
References
- See also A006577.
Links
- Alois P. Heinz, Rows n = 0..42, flattened (first 31 rows from T. D. Noe)
- Paul Andaloro, On total stopping times under 3x+1 iteration, Fib. Quar. 38 (1) (2000) 73.
- Jason Davies, Collatz Graph: All Numbers Lead to One
- Wolfdieter Lang, On Collatz Words, Sequences, and Trees, Journal of Integer Sequences, Vol 17 (2014), Article 14.11.7.
- Markus Sigg, On the cluster structures in Collatz preimages, arXiv:2012.07839 [math.GM], 2020.
- Wikipedia, Collatz Conjecture
Crossrefs
Programs
-
Haskell
import Data.List (union, sort) a127824 n k = a127824_tabf !! n !! k a127824_row n = a127824_tabf !! n a127824_tabf = iterate f [1] where f row = sort $ map (* 2) row `union` [x' | x <- row, let x' = (x - 1) `div` 3, x' * 3 == x - 1, odd x', x' > 1] -- Reinhard Zumkeller, Oct 03 2012
-
Mathematica
s={1}; t=Flatten[Join[s, Table[s=Union[2s, (Select[s,Mod[ #,3]==1 && OddQ[(#-1)/3] && (#-1)/3>1&]-1)/3]; s, {n,13}]]]
Formula
Suppose S is the list of numbers in row n. Then the list of numbers in row n+1 is the union of each number in S multiplied by 2 and the numbers (x-1)/3, where x is in S, with x=1 (mod 3) and where (x-1)/3 is an odd number greater than 1.
Comments