cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A127857 a(n)=sqrt(A127856(n)).

Original entry on oeis.org

6, 66, 786, 954, 1446, 2142, 6282, 9426, 13158, 16194, 16314, 37470, 113106, 1221462, 1357266, 1380018, 2739402, 3442866, 16287186, 39360078, 72999726, 138846414, 175958202, 195446226, 228662046, 319612062, 355291902, 1200435786
Offset: 1

Views

Author

Walter Kehowski, Feb 04 2007

Keywords

Examples

			a(1)=sqrt(A127856(1))=sqrt(36)=6.
		

Crossrefs

Extensions

Extended by Max Alekseyev, Feb 13 2009
Extended and b-file provided by Max Alekseyev, Feb 13 2009

A117755 Squares which remain squares when each digit is replaced by the next digit.

Original entry on oeis.org

0, 9, 25, 2025, 13225, 1974025, 4862025, 6943225, 60415182025, 207612366025, 916408817340025, 9960302475729225, 153668543313582025, 1978088677245614025, 13876266042653742025, 20761288044852366025, 47285734107144405625, 406066810454367265225
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 14 2006

Keywords

Comments

Replace 1 with 2, 2 with 3, ..., 8 with 9 and 9 with 0.

Examples

			13225 is in the sequence because (1) it is a square and (2) if we transform it we get 24336 and this is also a square.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 500000]^2, IntegerQ[Sqrt[FromDigits[(1 + IntegerDigits[ # ]) /. 10-> 0]]] &] (* Harvey P. Dale, Jan 21 2007 *)

Extensions

More terms from Harvey P. Dale, Jan 21 2007
3 more terms from Donovan Johnson, Apr 03 2008
a(14)-a(21) from Max Alekseyev, Oct 22 2008
a(1) = 0 prepended by Max Alekseyev, Jul 26 2023

A127858 Positive integers n such that r(n^2)=r(n)^2, where r is the cyclic replacement map of the digits d of n in base 12, that is, d->d+1 if d<11 and d->0 if d=11.

Original entry on oeis.org

6, 66, 786, 9426, 113106, 1357266, 16287186, 195446226, 2345354706, 28144256466, 337731077586, 4052772931026, 48633275172306, 583599302067666, 7003191624811986, 84038299497743826, 1008459593972925906
Offset: 1

Views

Author

Walter Kehowski, Feb 04 2007

Keywords

Comments

In base 12 the sequence is 6, 56, 556, 5556, 55556, 555556, 5555556, 55555556, 555555556, 5555555556, and so on.
If r is the cyclic replacement map in base 10, then the only positive integers n with the property that r(n^2)=r(n)^2 appear to be 5, 45. For example, r(45^2)=r(2025)=3136=56^2=r(45)^2.

Examples

			a(2)=66 since, in base 12, 66=56, r(56)=67 and r(56^2)=r(2630)=3741=67^2.
		

Crossrefs

Formula

a(n) = 5*(12^n - 1)/11 + 1. - Max Alekseyev, Jul 27 2023

Extensions

Edited by Max Alekseyev, Jul 27 2023

A127859 a(n) = r(A127858(n)), where r if the cyclic replacement map of the digits d of n in base 12 defined by d->d+1 if d<11 and d->0 if d=11.

Original entry on oeis.org

7, 79, 943, 11311, 135727, 1628719, 19544623, 234535471, 2814425647, 33773107759, 405277293103, 4863327517231, 58359930206767, 700319162481199, 8403829949774383, 100845959397292591, 1210151512767511087
Offset: 1

Views

Author

Walter Kehowski, Feb 04 2007

Keywords

Comments

In base 12 the sequence is 7, 67, 667, 6667, 66667, 666667, 6666667, 66666667, 666666667, 6666666667.

Examples

			a(2)=66 since, in base 12, 66=56, r(56)=67 and r(56^2)=r(2630)=3741=67^2.
In base 12, a(2)=r(A127858(2))=r(56)=67. In base 10, 67 is 79.
		

Crossrefs

Formula

a(n) = 6*(12^n - 1)/11 + 1. - Max Alekseyev, Jul 27 2023

Extensions

More terms from Max Alekseyev, Jul 27 2023

A127860 a(n) = A127858(n)^2.

Original entry on oeis.org

36, 4356, 617796, 88849476, 12792967236, 1842170994756, 265272427798596, 38199227257643076, 5500688696956346436, 792099172023982809156, 114062280767400751587396, 16424968430457074953412676
Offset: 1

Views

Author

Walter Kehowski, Feb 04 2007

Keywords

Comments

In base 12 the sequence is 30, 2630, 259630, 25909630, 2590409630, 259037409630, 259036X7409630, 259036X1X7409630, 259036X151X7409630, 259036X14851X7409630, where X is 10 and E is 11.

Examples

			a(1) = A127858(1)^2 = 6^2 = 36.
		

Crossrefs

Formula

a(n) = (5*(12^n - 1)/11 + 1)^2 = A127861(n) - (12^(2*n) - 1)/11.. - Max Alekseyev, Jul 27 2023

Extensions

Edited by Max Alekseyev, Jul 27 2023

A127861 a(n) = A127859(n)^2.

Original entry on oeis.org

49, 6241, 889249, 127938721, 18421818529, 2652725580961, 381992288212129, 55006887157191841, 7920991722491368609, 1140622807701026002081, 164249684304894971368609, 23651954539856242601907361
Offset: 1

Views

Author

Walter Kehowski, Feb 04 2007

Keywords

Comments

In base 12 the sequence is 41, 3741, 36X741, 36X1X741, 36X151X741, 36X14851X741, 36X147E851X741, 36X147E2E851X741, 36X147E262E851X741, 36X147E25962E851X741, where X is 10 and E is 11.

Examples

			a(1) = A127859(1)^2 = 7^2 = 49.
		

Crossrefs

Formula

a(n) = (6*(12^n - 1)/11 + 1)^2 = A127860(n) + (12^(2*n) - 1)/11. - Max Alekseyev, Jul 27 2023

Extensions

Edited by Max Alekseyev, Jul 27 2023

A192544 Bases b such that all integers m having the commuting property r(m)^2 = r(m^2), where r is cyclic replacement of digits d->(d+1) mod b, are of the form m = (b/2 - 1)*(b^k - 1)/(b - 1) + 1 for k >= 1.

Original entry on oeis.org

8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264
Offset: 1

Views

Author

Walter Kehowski, Jul 04 2011

Keywords

Comments

The bases b form the arithmetic sequence 8+4*k, k>=0, so b/2 is necessarily even. The bases b=2 and b=4 have b/2 as the only number with the commuting property. No odd base b has the commuting property.

Examples

			In base 8, the numbers with the commuting property are 4, 34, 334, 3334, 33334, 333334 etc, given by the formula 3*(8^k - 1)/7 + 1.
		

Crossrefs

Except for initial terms, same as A008586 and A124354.

Programs

  • Mathematica
    a[n_] := 4*(n + 1); Table[a[n], {n, 1, 65}] (* Robert P. P. McKone, Aug 25 2023 *)

Formula

From Chai Wah Wu, Dec 29 2021: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 2.
G.f.: x*(8 - 4*x)/(x - 1)^2. (End)

Extensions

More terms from Chai Wah Wu, Dec 29 2021
Edited by Max Alekseyev, Aug 24 2023
Showing 1-7 of 7 results.