cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127897 Series reversion of x/(1 + 2*x + 3*x^2 + x^3).

Original entry on oeis.org

0, 1, 2, 7, 27, 114, 507, 2342, 11125, 54002, 266684, 1335610, 6767477, 34629709, 178701317, 928903447, 4859345882, 25563551782, 135153617840, 717740916202, 3826894116962, 20478451476328, 109945087353190, 592048943478464, 3196930550222605, 17306392059508743, 93905862139673832
Offset: 0

Views

Author

Paul Barry, Feb 04 2007

Keywords

Comments

Series reversion of A127896.

Programs

  • Mathematica
    Flatten[{0,Rest[CoefficientList[Series[2*Sqrt[3]*Sqrt[(1+x)/x]*Sin[ArcSin[3*Sqrt[3]/(2*Sqrt[(1+x)/x])]/3]/3, {x, 0, 20}], x]]}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n) = my(A = sum(m=1,n, binomial(3*m, m-1)/m * x^m / (1+x +x*O(x^n))^m ) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 04 2018

Formula

G.f.: 2*sqrt(3)*sqrt((1+x)/x)*sin(arcsin(3*sqrt(3)/(2*sqrt((1+x)/x)))/3)/3;
a(n) = Sum_{k=0..n-1} Sum_{j=0..k} (1/(2k+j-1))*C(n-1,3k-j)*C(3k-j,k)*C(k,j)*2^(n-3k+j-1)*3^j;
Recurrence: 2*n*(2*n+1)*a(n) = (3*n-1)*(5*n-2)*a(n-1) + 2*(n-2)*(21*n-20)*a(n-2) + 23*(n-3)*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 23^(n+1/2)/(12*4^n*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
G.f.: Sum_{n>=1} binomial(3*n, n-1)/n * x^n / (1+x)^n. - Paul D. Hanna, Feb 04 2018
G.f. A(x) satisfies: A(x) = x * (1 + 2*A(x) + 3*A(x)^2 + A(x)^3). - Ilya Gutkovskiy, Jul 01 2020