cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127927 G.f. A(x) satisfies: [x^(2n)] A(x)/Catalan(x)^n = A001764(n) = C(3n,n)/(2n+1) and [x^(2n+1)] A(x)/Catalan(x)^n = A001764(n+1) for n>=0, where Catalan(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 9, 31, 108, 391, 1431, 5319, 19926, 75252, 285750, 1090491, 4177774, 16060401, 61916977, 239307063, 926929746, 3597296770, 13984508500, 54448030092, 212282062488, 828673761978, 3238495227846, 12669206034339
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2007

Keywords

Comments

Main diagonal of triangle A062745: a(n) = A062745(n,n) (see formula given in A062745 by Emeric Deutsch).

Crossrefs

Cf. A062745; A001764 (ternary trees), A000108 (Catalan).

Programs

  • Magma
    [1] cat [Binomial(2*n,n) - (-1)^(n-1)*(&+[Binomial(3*k, k)*Binomial(k-n - 1, n-2*k-1)/(2*k+1): k in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Apr 30 2018
  • Mathematica
    a[n_] := Binomial[2*n, n] - (-1)^(n-1)*Sum[ Binomial[3*k, k]*Binomial[k - n-1, n-1-2*k]/(2*k+1), {k, 0, Floor[(n-1)/2]}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    {a(n)=binomial(2*n,n)+(-1)^n*sum(i=0,(n-1)\2, binomial(3*i,i) *binomial(i-n-1,n-1-2*i)/(2*i+1))}
    

Formula

a(n) = C(2*n,n) - (-1)^(n-1)*Sum_{i=0..[(n-1)/2]} C(3*i,i)*C(i-n-1,n-1-2*i)/(2*i+1).
From Vaclav Kotesovec, May 01 2018: (Start)
Recurrence: 2*(n-1)*n*(2*n + 1)*(5*n - 6)*a(n) = (n-1)^2*(115*n^2 - 138*n + 56)*a(n-1) + 4*(n-2)*(n+1)*(2*n - 3)*(5*n - 11)*a(n-2) - 36*(n-2)*(2*n - 5)*(2*n - 3)*(5*n - 1)*a(n-3).
a(n) ~ 4^n / (phi^2 * sqrt(Pi*n)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. (End)