A127934 a(8n)=8n+1, a(8n+1)=a(8n+2)=a(8n+3)=8n+5, a(8n+4)=8n+6, a(8n+5)=a(8n+6)=a(8n+7)=8n+8.
1, 5, 5, 5, 6, 8, 8, 8, 9, 13, 13, 13, 14, 16, 16, 16, 17, 21, 21, 21, 22, 24, 24, 24, 25, 29, 29, 29, 30, 32, 32, 32, 33, 37, 37, 37, 38, 40, 40, 40, 41, 45, 45, 45, 46, 48, 48, 48, 49, 53, 53, 53, 54, 56, 56, 56, 57, 61, 61, 61, 62, 64, 64, 64, 65, 69, 69, 69, 70, 72, 72, 72
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 +4*x +x^4 +2*x^5)/(1-x-x^8+x^9))); // G. C. Greubel, Apr 30 2018 -
Mathematica
LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{1,5,5,5,6,8,8,8,9},80] (* Harvey P. Dale, Oct 04 2014 *) CoefficientList[Series[(1+4*x+x^4+2*x^5)/(1-x-x^8+x^9), {x,0,50}], x] (* G. C. Greubel, Apr 30 2018 *)
-
PARI
x='x + O('x^50); Vec((1 +4*x +x^4 +2*x^5)/(1-x-x^8+x^9)) \\ G. C. Greubel, Apr 30 2018
Formula
G.f.: (1 +4*x +x^4 +2*x^5)/(1 -x -x^8 +x^9). - G. C. Greubel, Apr 30 2018