A127943 a(n) = 2^binomial(n+1,2)/A046161(n).
1, 1, 1, 4, 8, 128, 2048, 131072, 2097152, 536870912, 137438953472, 140737488355328, 72057594037927936, 295147905179352825856, 1208925819614629174706176, 19807040628566084398385987584, 40564819207303340847894502572032, 2658455991569831745807614120560689152
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..82
Programs
-
GAP
List([0..30], n-> 2^(Binomial(n+1,2))/DenominatorRat(Binomial(2*n, n)/4^n)); # G. C. Greubel, Dec 09 2018
-
Magma
[2^(Binomial(n+1,2))/Denominator(Binomial(2*n, n)/4^n): n in [0..25]]; // G. C. Greubel, May 01 2018
-
Maple
a:=n->2^(binomial(n+1,2))/denom(binomial(2*n,n)/4^n); seq(a(n),n=0..17); # Muniru A Asiru, Dec 10 2018
-
Mathematica
Table[2^Binomial[n+1,2]/Denominator[Binomial[2*n,n]/4^n], {n, 0, 25}] (* G. C. Greubel, May 01 2018 *)
-
PARI
for(n=0,25, print1(2^(binomial(n+1,2))/denominator(binomial(2*n, n)/4^n), ", ")) \\ G. C. Greubel, May 01 2018
-
PARI
a(n) = numerator(2^(n*(n-1)/2)/n!); \\ Altug Alkan, May 02 2018
-
Sage
[2^binomial(n+1,2)/denominator(binomial(2*n,n)/4^n) for n in range(30)] # G. C. Greubel, Dec 09 2018
Formula
a(n) = 2^binomial(n+1,2)/denominator(binomial(2*n,n)/4^n).
a(n) = 2^A127944(n).
Comments