cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127943 a(n) = 2^binomial(n+1,2)/A046161(n).

Original entry on oeis.org

1, 1, 1, 4, 8, 128, 2048, 131072, 2097152, 536870912, 137438953472, 140737488355328, 72057594037927936, 295147905179352825856, 1208925819614629174706176, 19807040628566084398385987584, 40564819207303340847894502572032, 2658455991569831745807614120560689152
Offset: 0

Views

Author

Paul Barry, Feb 08 2007

Keywords

Comments

Apparently, also numerator of 2^(n*(n-1)/2)/n!. - N. J. A. Sloane, Dec 31 2010

Programs

  • GAP
    List([0..30], n-> 2^(Binomial(n+1,2))/DenominatorRat(Binomial(2*n, n)/4^n)); # G. C. Greubel, Dec 09 2018
  • Magma
    [2^(Binomial(n+1,2))/Denominator(Binomial(2*n, n)/4^n): n in [0..25]]; // G. C. Greubel, May 01 2018
    
  • Maple
    a:=n->2^(binomial(n+1,2))/denom(binomial(2*n,n)/4^n); seq(a(n),n=0..17); # Muniru A Asiru, Dec 10 2018
  • Mathematica
    Table[2^Binomial[n+1,2]/Denominator[Binomial[2*n,n]/4^n], {n, 0, 25}] (* G. C. Greubel, May 01 2018 *)
  • PARI
    for(n=0,25, print1(2^(binomial(n+1,2))/denominator(binomial(2*n, n)/4^n), ", ")) \\ G. C. Greubel, May 01 2018
    
  • PARI
    a(n) = numerator(2^(n*(n-1)/2)/n!); \\ Altug Alkan, May 02 2018
    
  • Sage
    [2^binomial(n+1,2)/denominator(binomial(2*n,n)/4^n) for n in range(30)] # G. C. Greubel, Dec 09 2018
    

Formula

a(n) = 2^binomial(n+1,2)/denominator(binomial(2*n,n)/4^n).
a(n) = 2^A127944(n).