cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127946 Hankel transform of central coefficients of (1+k*x-3x^2)^n, k arbitrary integer.

Original entry on oeis.org

1, -6, -108, 5832, 944784, -459165024, -669462604992, 2928229434235008, 38424226636031774976, -1512608105754026853705216, -178635992073339063368878599168, 63289660175631590117213474413627392, 67269440586795655766964092111705109663744
Offset: 0

Views

Author

Paul Barry, Feb 08 2007

Keywords

Comments

Hankel transform of A098333. The Hankel transform of e.g.f. Bessel_I(0,2*sqrt(-3)x) and its k-th binomial transforms, are given by a(n). In general, the Hankel transform of e.g.f. Bessel_I(0,2*sqrt(m)x) and its binomial transforms is 2^n*m^C(n+1,2).
Let T_n denote the n X n matrix with T_n(i,j) = 3^min(i,j); then a(n) = ((-1)^floor((n+1)/2))*det(T_(n+1))/3. - Lechoslaw Ratajczak, May 16 2021

Crossrefs

a(n) = A083667(n+1)/2.

Programs

Formula

a(n) = (cos(Pi*n/2) - sin(Pi*n/2))*6^n*3^C(n,2) = 2^n*(-3)^C(n+1,2).