cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127970 Number triangle A127967 modulo 2.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Paul Barry, Feb 09 2007

Keywords

Comments

Row sums are A127971.

Examples

			Triangle begins
1,
1, 1,
1, 0, 1,
1, 0, 0, 1,
1, 0, 1, 0, 1,
1, 0, 0, 0, 1, 1,
1, 0, 1, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 1, 0, 1, 0, 0, 0, 1,
1, 0, 0, 0, 1, 0, 0, 0, 1, 1,
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1
		

A131217 Triangle read by rows: T(n, k) = A047999(n, k) + (n+1 mod 2)*[k=1].

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Roger L. Bagula, Sep 27 2007

Keywords

Comments

An XOR of the sequence terms of A047999 is the algorithm.
Former name: Triangular sequence of a Gray code type made from Pascal's triangle modulo 2 as: T(n, k) = (b(n, k) + b(n, k+1)) mod 2, where b(n, k) = A047999(n, k).

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 1, 1;
  1, 1, 0, 0, 1;
  1, 1, 0, 0, 1, 1;
  1, 1, 1, 0, 1, 0, 1;
  1, 1, 1, 1, 1, 1, 1, 1;
  1, 1, 0, 0, 0, 0, 0, 0, 1;
  1, 1, 0, 0, 0, 0, 0, 0, 1, 1;
  1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1;
		

Crossrefs

Programs

  • Magma
    A047999:= func< n, k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >;
    A131217:= func< n,k | k ne 1 select A047999(n,k) else 1 >;
    [A131217(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 03 2025
    
  • Mathematica
    (* First program *)
    A047999[n_, k_] := Mod[Binomial[n, k], 2];
    T[n_, k_]:= Mod[A047999[n-1,k-1] + A047999[n-1,k], 2] + Boole[n==0] + Mod[n+1, 2]*Boole[k==1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
    (* Second program *)
    Table[Boole[BitAnd[n-k,k]==0] +Mod[n+1,2]*Boole[k==1], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2025 *)
  • SageMath
    def A047999(n,k): return int(not ~n & k)
    def A131217(n,k): return A047999(n,k) + ((n+1)%2)*int(k==1)
    flatten([[A131217(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Sep 03 2025

Formula

T(n, k) = (A047999(n-1, k-1) + A047999(n-1, k)) mod 2 + [n=0] + (n+1 mod 2)*[k=1].
From G. C. Greubel, Sep 03 2025: (Start)
T(n, k) = A047999(n, k) + (n+1 mod 2)*[k=1].
Sum_{k=0..n} T(n, k) = A001316(n) + (1 + (-1)^n)/2 - [n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = (1 + (-1)^n)/2*(A001316(n/2) - 1) + [n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = A127971(n) - [n=1]. (End)

Extensions

Edited by G. C. Greubel, Sep 03 2025
Showing 1-2 of 2 results.