cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127983 a(n) = (n - 2/3)*2^n - n/2 + 3/4 - (-1)^n/12.

Original entry on oeis.org

1, 5, 18, 52, 137, 339, 808, 1874, 4263, 9553, 21158, 46416, 101029, 218447, 469668, 1004878, 2140835, 4543821, 9611938, 20272460, 42642081, 89478475, 187345568, 391468362, 816491167, 1700091209, 3534400158, 7337235784, 15211342493
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n-2/3)*2^n -n/2 +3/4 -(-1)^n/12: n in [1..50]]; // G. C. Greubel, May 08 2018
  • Mathematica
    Table[(n-2/3)*2^n -n/2 +3/4 -(-1)^n/12, {n, 1, 50}]
    LinearRecurrence[{5,-7,-1,8,-4}, {1,5,18,52,137}, 50] (* G. C. Greubel, May 08 2018 *)
  • PARI
    a(n) = (n-2/3)*2^n -n/2 +3/4 -(-1)^n/12 \\ G. C. Greubel, May 08 2018
    

Formula

a(n) = (n - 2/3)*2^n - n/2 + 3/4 - (-1)^n/12.
G.f.: x*(1-2*x^3)/(1+x)/((2*x-1)^2*(x-1)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009 [checked and corrected by R. J. Mathar, Sep 16 2009]