A128038 Primes p such that p1=2p-33 and p2=2p+33 are consecutive primes.
129533, 141263, 212873, 323243, 381077, 393697, 449677, 486377, 525607, 583753, 693733, 774343, 988733, 1115453, 1138987, 1200887, 1204823, 1394083, 1419163, 1604143, 1661237, 1688887, 1760797, 1823567, 1825687, 1880363, 1972037
Offset: 1
Keywords
Examples
{p,p1,p2,pi(p1),pi(p2)}:{129533,259033,259099,22765,22766},{141263,282493,282559,24644,24645},{212873,425713,425779,35832,35833},{323243,646453,646519,52557,52558},{381077,762121,762187,61145,61146},{393697,787361,787427,63011,63012}.
Crossrefs
Cf. A103806.
Programs
-
Maple
a:=proc(n) if isprime(n)=true and isprime(2*n-33)=true and nextprime(2*n-33)=2*n+33 then n else fi end: seq(a(n),n=1..3000000); # Emeric Deutsch, May 09 2007
-
Mathematica
cp66Q[n_]:=Module[{p1=2n-33},PrimeQ[p1]&&NextPrime[p1]-p1==66]; Select[Prime[Range[150000]],cp66Q] (* Harvey P. Dale, Mar 24 2011 *)
Extensions
More terms from Emeric Deutsch, May 09 2007