cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128045 a(n) = denominator of b(n), where b(1) = 1, b(n) = Sum_{k=1..n-1} b(n-k) * H(k); H(k) = Sum_{j=1..k} 1/j, the k-th harmonic number.

Original entry on oeis.org

1, 1, 2, 6, 2, 5, 360, 2520, 1680, 15120, 2700, 11880, 9979200, 8648640, 18345600, 2476656000, 27243216000, 714714000, 427508928000, 1160381376000, 1055947052160000, 22174888095360000, 38718058579200, 141031842336000
Offset: 1

Views

Author

Leroy Quet, Feb 11 2007

Keywords

Examples

			1, 1, 5/2, 35/6, 27/2, 156/5, 25951/360, 419681/2520, 646379/1680, 13439609/15120, 5544403/2700, 56359019/11880, ...
		

Crossrefs

Cf. A001008, A002805, A128044 (numerators), A305306.

Programs

  • Mathematica
    f[l_List] := Block[{n = Length[l] + 1},Append[l, Sum[l[[n - k]]*HarmonicNumber[k], {k, n - 1}]]];Denominator[Nest[f, {1}, 24]] (* Ray Chandler, Feb 12 2007 *)

Formula

G.f. for fractions: x / (1 + log(1 - x) / (1 - x)). - Ilya Gutkovskiy, Sep 01 2021

Extensions

Extended by Ray Chandler, Feb 12 2007