cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A128053 a(n)=A128056(n)/A128055(n).

Original entry on oeis.org

1, -3, -3, 7, 7, -9, -9, 47, 47, -123, -123, 161, 161, -843, -843, 2207, 2207, -2889, -2889, 15127, 15127, -39603, -39603, 51841, 51841, -271443, -271443, 710647, 710647, -930249, -930249, 4870847, 4870847, -12752043, -12752043
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Crossrefs

Cf. A128052.

Formula

a(n)=(-1)^C(n+1,2)*(F(n-1)+F(n+1))(5/6-cos(pi*n/3)/3)(1+(-1)^n)/2+(F(n)+F(n+2))(5/6-cos(pi*(n+1)/3)/3)(1-(-1)^n)/2.
Empirical g.f.: -(x-1) * (x^10-2*x^9-5*x^8+2*x^7+9*x^6+9*x^4+2*x^3-5*x^2-2*x+1) / ((x^4+3*x^2+1)*(x^8-3*x^6+8*x^4-3*x^2+1)). - Colin Barker, Jun 27 2013

A128055 a(n) = 2^A128054(n).

Original entry on oeis.org

1, 1, 2, 4, 8, 32, 64, 64, 128, 256, 512, 2048, 4096, 4096, 8192, 16384, 32768, 131072, 262144, 262144, 524288, 1048576, 2097152, 8388608, 16777216, 16777216, 33554432, 67108864, 134217728, 536870912, 1073741824
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Comments

A factor in A128056.
The signed sequence 1,1,2,-4,-8,-32,-64,-64,-128,256,512... is the Hankel transform of the doubled sequence 1,1,2,2,6,6,... of central binomial coefficients (A128014). - Paul Barry, Sep 09 2008

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-4,8,-16,32},{1,1,2,4,8},31] (* James C. McMahon, Jan 05 2025 *)

Formula

G.f.: (-1-16*x^4+4*x^3-4*x^2+x)/((2*x-1)*(4*x^2-2*x+1)*(4*x^2+2*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
Sum_{n>=0} 1/a(n) = 62/21. - Amiram Eldar, Mar 28 2023

A128057 Expansion of (1+x)/sqrt(1+4x^2).

Original entry on oeis.org

1, 1, -2, -2, 6, 6, -20, -20, 70, 70, -252, -252, 924, 924, -3432, -3432, 12870, 12870, -48620, -48620, 184756, 184756, -705432, -705432, 2704156, 2704156, -10400600, -10400600, 40116600, 40116600, -155117520, -155117520
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Comments

Hankel transform is A128056. Binomial transform is A128058. Unsigned version is A128014.

Crossrefs

Cf. A000984.

Programs

  • Mathematica
    CoefficientList[Series[(1+x)/Sqrt[1+4x^2],{x,0,40}],x] (* Harvey P. Dale, May 12 2015 *)

Formula

a(n)=(-1)^C(n,2)*(C(n,n/2)*(1+(-1)^n)/2+C(n-1,(n-1)/2)*(1-(-1)^n)/2);
Conjecture: n*(5*n-9)*a(n) +4*a(n-1) +4*(5*n-4)*(n-2)*a(n-2)=0. - R. J. Mathar, Dec 02 2014
D-finite with recurrence: n*a(n) +(n-2)*a(n-1) +4*(n-1)*a(n-2) +4*(n-3)*a(n-3)=0. - R. J. Mathar, Dec 02 2014

A128058 Expansion of 1/((1-x)sqrt(1-2x+5x^2)).

Original entry on oeis.org

1, 2, 1, -4, -9, 2, 43, 72, -53, -418, -549, 860, 4161, 4006, -11619, -41104, -24989, 145046, 399571, 89796, -1723259, -3787914, 829841, 19739016, 34642741, -26909998, -219300587, -300591148, 467328447, 2369124842
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Comments

Partial sums of A098331. Binomial transform of A128057. Hankel transform is A128056.

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)Sqrt[1-2x+5x^2]),{x,0,50}],x] (* Harvey P. Dale, Jun 23 2018 *)

Formula

a(n)=sum{k=0..n, sum{j=0..k, C(k,j)*C(k-j,j)*(-1)^j}}
D-finite with recurrence: n*a(n) +(-3*n+1)*a(n-1) +(7*n-6)*a(n-2) +5*(-n+1)*a(n-3)=0. - R. J. Mathar, Jan 23 2020

A186335 A transform of the central binomial coefficients.

Original entry on oeis.org

1, 1, 4, 7, 21, 46, 127, 309, 832, 2131, 5709, 15010, 40281, 107423, 289314, 778087, 2103361, 5687938, 15427099, 41880357, 113912236, 310148223, 845598389, 2307657222, 6304306171, 17237338021, 47170965082, 129181447969, 354027263457, 970851960736, 2664008539017
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Hankel transform is (-1)^n*A128056(n).

Programs

  • Maple
    A186335 := proc(n)
        add(add(binomial(k-j,n-k-j)*binomial(k,j)*A000984(n-k-j),j=0..n),k=0..n) ;
    end proc: # R. J. Mathar, Feb 13 2015
  • Mathematica
    Table[Sum[Sum[Binomial[k-j,n-k-j]*Binomial[k,j]*Binomial[2*(n-k-j),n-k-j], {j,0,n}], {k,0,n}], {n,0,40}] (* Vaclav Kotesovec, Oct 30 2017 *)

Formula

a(n)=sum{k=0..n, sum{j=0..n, binomial(k-j,n-k-j)*binomial(k,j)*A000984(n-k-j)}}.
Conjecture: n*a(n) +(-2*n+1)*a(n-1) +5*(-n+1)*a(n-2) +3*(2*n-3)*a(n-3) +5*(n-2)*a(n-4)=0. - R. J. Mathar, Feb 13 2015
a(n) ~ ((1+sqrt(21))/2)^(n + 3/2) / (2 * 21^(1/4) * sqrt(Pi*n)) . - Vaclav Kotesovec, Oct 30 2017
Showing 1-5 of 5 results.