A128064
Triangle T with T(n,n)=n, T(n,n-1)=-(n-1) and otherwise T(n,k)=0; 0
1, -1, 2, 0, -2, 3, 0, 0, -3, 4, 0, 0, 0, -4, 5, 0, 0, 0, 0, -5, 6, 0, 0, 0, 0, 0, -6, 7, 0, 0, 0, 0, 0, 0, -7, 8, 0, 0, 0, 0, 0, 0, 0, -8, 9, 0, 0, 0, 0, 0, 0, 0, 0, -9, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 12
Offset: 1
Examples
First few rows of the triangle are: 1; -1,2; 0,-2,3; 0,0,-3,4; 0,0,0,-4,5; 0,0,0,0,-5,6; 0,0,0,0,0,-6,7; ... From _Boris Putievskiy_, Feb 07 2013: (Start) The start of the sequence as table: 1..-1..0..0..0..0..0... 2..-2..0..0..0..0..0... 3..-3..0..0..0..0..0... 4..-4..0..0..0..0..0... 5..-5..0..0..0..0..0... 6..-6..0..0..0..0..0... 7..-7..0..0..0..0..0... . . . (End)
Links
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Mathematica
row[1] = {1}; row[2] = {-1, 2}; row[n_] := Join[Array[0&, n-2], {-n+1, n}]; Table[row[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 12 2015 *)
Formula
Number triangle T(n,k)=sum{j=k..n, C(n,j)*C(j,k)*(-1)^(j-k)*(j+1)}. - Paul Barry, May 26 2007
a(n) = A002260(n)*A167374(n); a(n) = i*floor((i+2)/(t+2))*(-1)^(i+t+1), where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Feb 07 2013
G.f.: (-1)^k*[x^k*exp(k*x)]'/exp(k*x)=sum(n>=k, (-1)^n*T(n,k)*x^n). - Vladimir Kruchinin, Oct 18 2013
Comments