A128159 a(n) = least k such that the remainder when 19^k is divided by k is n.
2, 17, 358, 5, 7, 13, 118, 11, 22, 207, 14, 6683, 21, 1055, 221, 6843, 86, 39959, 23, 559, 34, 129, 26, 25, 51, 799, 334, 33, 166, 47427581, 1537, 901, 68, 39, 326, 87169, 44, 161, 46, 3509, 341, 529, 106, 1098179, 158, 657, 314, 49621349, 75, 143, 62, 749, 116
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
t = Table[0, {10000} ]; k = 1; While[ k < 3100000000, a = PowerMod[19, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 04 2009 *) clk=Compile[{{n,Integer}},{k=1};While[PowerMod[19,k,k]!=n,k++];k]; Array[ clk,55] (* _Harvey P. Dale, May 10 2014 *)
Extensions
More terms from Ryan Propper, Mar 24 2007
More terms from Robert G. Wilson v, Aug 04 2009
Comments