A128177 A128174 * A004736 as infinite lower triangular matrices.
1, 2, 1, 4, 2, 1, 6, 4, 2, 1, 9, 6, 4, 2, 1, 12, 9, 6, 4, 2, 1, 16, 12, 9, 6, 4, 2, 1, 20, 16, 12, 9, 6, 4, 2, 1, 25, 20, 16, 12, 9, 6, 4, 2, 1, 30, 25, 20, 16, 12, 9, 6, 4, 2, 1, 36, 30, 25, 20, 16, 12, 9, 6, 4, 2, 1, 42, 36, 30, 25, 20, 16, 12, 9, 6, 4, 2, 1
Offset: 1
Examples
First few rows of the triangle: 1; 2, 1; 4, 2, 1; 6, 4, 2, 1; 9, 6, 4, 2, 1; 12, 9, 6, 4, 2, 1; ...
Programs
-
Maple
seq(seq(floor((n-k+2)^2/4), k=1..n), n=1..20); # Ridouane Oudra, Mar 23 2024
-
Mathematica
T[n_,k_]:=Floor[(n-k+2)^2/4];Table[T[n,k],{n,12},{k,n}]//Flatten (* James C. McMahon, Jan 05 2025 *)
-
PARI
lista(nn) = {t128174 = matrix(nn, nn, n, k, (k<=n)*(1+(-1)^(n-k))/2); t004736 = matrix(nn, nn, n, k, (k<=n)*(n - k + 1)); t128177 = t128174*t004736; for (n = 1, nn, for (k = 1, n, print1(t128177[n, k], ", ");););} \\ Michel Marcus, Feb 11 2014
Formula
From Ridouane Oudra, Mar 23 2024: (Start)
T(n, k) = A002620(n-k+2), with 1 <= k <= n;
T(n, k) = floor((n-k+2)^2/4);
T(n, k) = (1/2)*floor((n-k+2)^2/2);
T(n, k) = (1/8)*(2*(n-k+2)^2 + (-1)^(n-k) - 1). (End)
Extensions
Partially edited and more terms from Michel Marcus, Feb 11 2014
Comments