cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A250216 Weak irregular primes. A prime is weak irregular iff it is a Bernoulli irregular prime or an Euler irregular prime.

Original entry on oeis.org

19, 31, 37, 43, 47, 59, 61, 67, 71, 79, 101, 103, 131, 137, 139, 149, 157, 193, 223, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 311, 347, 349, 353, 359, 373, 379, 389, 401, 409, 419, 421, 433, 461, 463, 467, 491, 509, 523, 541, 547, 557, 563, 571, 577, 587, 593
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

Primes p which divide A241601(k) for some k.

Crossrefs

Programs

  • Mathematica
    pmax = 593; m0 = 200; dm = 100;
    b[n_] := Numerator[BernoulliB[2 n]/(2 n)];
    c[n_] := Numerator[SeriesCoefficient[Log[Tan[x]+1/Cos[x]], {x, 0, 2n+1}]];
    (* a1 = A241601 *) a1[0] = 1; a1[n_] := a1[n] = If[EvenQ[n], b[n/2] // Abs, c[(n - 1)/2]];
    f[m_] := f[m] = Module[{}, aa = Table[a1[n], {n, 0, m}]; okQ[p_] := AnyTrue[aa, Divisible[#, p] &]; Reap[For[p = 2, p <= pmax, p = NextPrime[p], If[okQ[p], Sow[p]]]][[2, 1]]];
    f[m = m0]; f[m = m + dm];
    While[Print["m = ", m]; f[m] != f[m - dm], m = m + dm];
    A250216 = f[m] (* Jean-François Alcover, Jul 23 2019 *)

A321217 Genocchi irregular primes.

Original entry on oeis.org

17, 31, 37, 41, 43, 59, 67, 73, 89, 97, 101, 103, 109, 113, 127, 131, 137, 149, 151, 157, 193, 223, 229, 233, 241, 251, 257, 263, 271, 277, 281, 283, 293, 307, 311, 313, 331, 337, 347, 353, 379, 389, 397, 401, 409, 421, 431, 433, 439, 449, 457, 461, 463, 467, 491, 499
Offset: 1

Views

Author

Michel Marcus, Oct 31 2018

Keywords

Comments

An odd prime p is G-irregular if it divides at least one of the integers G2, G4, ..., G(p-3).
Conjecture (Hu et al., 2019): The asymptotic density of this sequence within the primes is 1 - 3*A/(2*sqrt(e)) = 0.659776..., where A is Artin's constant (A005596). - Amiram Eldar, Dec 06 2022

Crossrefs

Cf. A036968 (Genocchi numbers), A000928 (irregular primes), A120337 (Euler-irregular primes), A128197 (strong irregular primes), A250216 (weak irregular primes), A005596.

Programs

  • Maple
    A321217_list := proc(bound)
       local ae, F, p, m, maxp; F := NULL;
       for m from 2 by 2 to bound do
          p := nextprime(m+1);
          ae := abs(m*euler(m-1, 0));
          maxp := min(ae, bound);
          while p <= maxp do
              if ae mod p = 0 then F := F, p fi;
              p := nextprime(p)
          od
       od;
    sort({F}) end: A321217_list(500); # Peter Luschny, Nov 11 2018
  • Mathematica
    G[n_] := G[n] = n EulerE[n - 1, 0];
    GenocchiIrregularQ[p_] := AnyTrue[Table[G[k], {k, 2, p-3, 2}], Divisible[#, p]&];
    Select[Prime[Range[2, 100]], GenocchiIrregularQ] (* Jean-François Alcover, Nov 16 2018 *)

Extensions

More terms from Peter Luschny, Nov 11 2018

A250214 Number of values of k such that prime(n) divides A241601(k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 2, 0, 1, 1, 0, 1, 1, 3, 3, 0, 0, 0, 0, 1, 2, 3, 1, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 4, 0, 0, 1, 0, 1, 2, 2, 1, 2, 0, 1, 3, 3, 1, 0, 0, 1, 1, 3, 3, 2, 0, 0, 3, 1, 1
Offset: 1

Views

Author

Eric Chen, Dec 26 2014

Keywords

Comments

a(n) is called the weak irregular index of n-th prime, that is, the Bernoulli irregular index + Euler irregular index.
Prime(n) is a regular prime if and only if a(n) = 0.
Does every natural number appear in this sequence? For example, for the primes 491 and 1151, a(94) = a(190) = 4. (491 and 1151 are the only primes below 1800 with weak irregular index 4 or more.) However, does a(n) have a limit?

Examples

			a(8) = 1 since the 8th prime is 19, which divides A241601(11).
a(13) = 0 since the 13th prime is 41, a regular prime.
a(19) = 2 since the 19th prime is 67, which divides both A241601(27) and A241601(58).
		

Crossrefs

A250215 Least k such that the n-th weak irregular prime (A250216(n)) divides A241601(k).

Original entry on oeis.org

11, 23, 32, 13, 15, 44, 7, 27, 29, 19, 63, 24, 22, 43, 129, 130, 62, 75, 133, 84, 211, 127, 164, 100, 84, 9, 20, 156, 88, 87, 280, 19, 71, 125, 163, 100, 200, 382, 126, 159, 240, 215, 196, 130, 94, 292, 141, 400, 86, 270, 222, 175, 389, 52, 45, 22, 592, 522, 20
Offset: 1

Views

Author

Eric Chen, Dec 26 2014

Keywords

Comments

A prime p can divide A241601(k) for more than one k; the first few examples are as follows:
p k
67 27, 58
101 63, 68
149 130, 147
157 62, 110
241 211, 239
263 100, 213
307 88, 91, 137
311 87, 193, 292
349 19, 257
353 71, 186, 300
etc.

Examples

			19 is the first weak irregular prime and divides A241601(11) = 50521, so a(1) = 11.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Feb 18 2022
Showing 1-4 of 4 results.