A128205 a(n) = 2^(n-1)*A047240(n).
0, 1, 4, 24, 56, 128, 384, 832, 1792, 4608, 9728, 20480, 49152, 102400, 212992, 491520, 1015808, 2097152, 4718592, 9699328, 19922944, 44040192, 90177536, 184549376, 402653184, 822083584, 1677721600, 3623878656, 7381975040, 15032385536, 32212254720
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,8,-16).
Programs
-
Mathematica
a047240[n_] := 6 Floor[n/3] + Mod[n, 3] a128205[n_] := Map[2^(#-1) a047240[#]&, Range[0, n]] a128205[25] (* data *) (* Hartmut F. W. Hoft, Mar 13 2017 *) LinearRecurrence[{2,0,8,-16},{0,1,4,24},40] (* Harvey P. Dale, Feb 13 2024 *)
-
PARI
concat(0, Vec(x*(1 + 2*x + 16*x^2) / ((1 - 2*x)^2*(1 + 2*x + 4*x^2)) + O(x^40))) \\ Colin Barker, Mar 13 2017
Formula
a(n) = 2^(n-1)*(cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3)/3 + 2n - 1);
O.g.f.: x(1+2x+16x^2)/((2x-1)^2*(4x^2+2x+1)). a(n) = 2a(n-1) + 8a(n-3) - 16a(n-4). - R. J. Mathar, Apr 28 2008
Comments