cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128205 a(n) = 2^(n-1)*A047240(n).

Original entry on oeis.org

0, 1, 4, 24, 56, 128, 384, 832, 1792, 4608, 9728, 20480, 49152, 102400, 212992, 491520, 1015808, 2097152, 4718592, 9699328, 19922944, 44040192, 90177536, 184549376, 402653184, 822083584, 1677721600, 3623878656, 7381975040, 15032385536, 32212254720
Offset: 0

Views

Author

Paul Barry, Feb 19 2007

Keywords

Comments

-a(n) is the Hankel transform of A030662(n) = binomial(2*n,n)-1.

Crossrefs

Programs

  • Mathematica
    a047240[n_] := 6 Floor[n/3] + Mod[n, 3]
    a128205[n_] := Map[2^(#-1) a047240[#]&, Range[0, n]]
    a128205[25] (* data *) (* Hartmut F. W. Hoft, Mar 13 2017 *)
    LinearRecurrence[{2,0,8,-16},{0,1,4,24},40] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x + 16*x^2) / ((1 - 2*x)^2*(1 + 2*x + 4*x^2)) + O(x^40))) \\ Colin Barker, Mar 13 2017

Formula

a(n) = 2^(n-1)*(cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3)/3 + 2n - 1);
O.g.f.: x(1+2x+16x^2)/((2x-1)^2*(4x^2+2x+1)). a(n) = 2a(n-1) + 8a(n-3) - 16a(n-4). - R. J. Mathar, Apr 28 2008