cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128318 G.f.: A(x) = 1+x*(1+2x*(1+3x*(...(1+n*x*(...)^2)^2...)^2)^2)^2.

Original entry on oeis.org

1, 1, 4, 28, 276, 3480, 53232, 955524, 19672320, 456803328, 11810032896, 336463895808, 10473959755008, 353739038360832, 12883270796310528, 503352328766459904, 21001144899441162240, 931963581151516477440, 43832663421577452887040, 2178029362561822117094400, 114014865901176834809333760
Offset: 0

Views

Author

Paul D. Hanna, Mar 07 2007

Keywords

Examples

			G.f.: A(x) = 1 + x*B(x)^2; B(x) = 1 + 2*x*C(x)^2; C(x) = 1 + 3*x*D(x)^2; D(x) = 1 + 4*x*E(x)^2; E(x) = 1 + 5*x*F(x)^2; F(x) = 1 + 6*x*G(x)^2; ...
where the respective sequences begin:
A=[1,1,4,28,276,3480,53232,955524,19672320,...];
B=[1,2,12,114,1440,22368,409248,8585088,202733760,...];
C=[1,3,24,288,4440,82080,1752000,42178800,1127335680,...];
D=[1,4,40,580,10560,226560,5532960,150570240,4501422240,...];
E=[1,5,60,1020,21420,523320,14399280,437433780,14479664640,...];
F=[1,6,84,1638,38976,1068480,32716992,1098069504,39896236800,...];
G=[1,7,112,2464,65520,1991808,67189248,2469837888,97765355520,...];
H=[1,8,144,3528,103680,3461760,127569600,5098406400,218459165760,...];
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+(n+1)*x);for(k=0,n,A=1+(n-k+1)*x*A^2 +x*O(x^n));polcoeff(A,n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

Conjecture: a(n) ~ n! * (8/3)^n / sqrt(n). - Vaclav Kotesovec, Mar 19 2016

A302657 a(n) = [x^n] 1 + x*(1 + 2*x*(1 + 3*x*(1 + 4*x*(1 + 5*x*(1 + ...)^n)^n)^n)^n)^n.

Original entry on oeis.org

1, 1, 4, 66, 2576, 181580, 20040132, 3176873014, 683004260416, 191131280146584, 67496202291859460, 29358012892996082966, 15422766301341408798384, 9628365732822661693594804, 7046590639669984518105404260, 5975695685335003337179698967230, 5813189543201787075970895280603392
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 11 2018

Keywords

Comments

(a(n) / (n-1)!^2)^(1/n) tends to 4.3002... - Vaclav Kotesovec, Apr 11 2018

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1 + x Fold[((#2 + 1) x #1 + 1)^n &, 0, Reverse[Range[n]]], {x, 0, n}], {n, 0, 16}]

A302688 Expansion of 1 + x*(1 + 2*x*(1 + 3*x*(1 + 4*x*(1 + 5*x*(1 + ...)^5)^4)^3)^2).

Original entry on oeis.org

1, 1, 2, 12, 162, 3888, 144768, 7693920, 551981520, 51355426992, 6010929609408, 864202875949440, 149698423474606080, 30747550680449611200, 7388611598645058636000, 2053517715502048081023360, 653614372412684344833419520, 236202930442590804658824312960
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 11 2018

Keywords

Comments

(a(n) / n!^2)^(1/n) tends to 1.36594... - Vaclav Kotesovec, Apr 12 2018

Crossrefs

Programs

  • Mathematica
    nmax = 17; CoefficientList[Series[1 + x Fold[((#2 + 1) x #1 + 1)^#2 &, 0, Reverse[Range[nmax]]], {x, 0, nmax}], x]

Formula

G.f. A(x) = 1 + x + 2*x^2 + 12*x^3 + 162*x^4 + 3888*x^5 + 144768*x^6 + 7693920*x^7 + 551981520*x^8 + ...
Showing 1-3 of 3 results.