cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A128329 Main diagonal of table A128325.

Original entry on oeis.org

1, 1, 4, 30, 321, 4389, 72512, 1399755, 30865353, 764755508, 21024535960, 634924059276, 20890221475598, 743727414390456, 28484480606420928, 1167761832049224515, 51022550712426870397, 2366859765773183488674
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2007

Keywords

Crossrefs

Cf. A030266; A128325 (table), A128326 (row 1), A128327 (row 2), A128328 (row 3).

Programs

  • PARI
    {a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,n,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}

Formula

a(n) = [x^n] {1 + H(x)}, where H(x) is the (n+2)-th self-composition of G(x) and G(x) = x + x*G(G(x)) is the g.f. of A030266.

A128327 Row 2 of table A128325.

Original entry on oeis.org

1, 1, 4, 20, 114, 712, 4772, 33896, 253102, 1975610, 16054568, 135413280, 1182664740, 10675334958, 99437919664, 954581258020, 9433732288486, 95883201181772, 1001411775057322, 10738668800872594, 118151145186400408
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2007

Keywords

Crossrefs

Cf. A030266; A128325 (table), A128326 (row 1), A128328 (row 3), A128329 (main diagonal).

Programs

  • PARI
    {a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,2,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}

Formula

G.f.: A(x) = 1 + G(G(G(G(x)))) = B(G(x)), where B(x) is the g.f. of A128326 and G(x) = x + x*G(G(x)) is the g.f. of A030266.

A128328 Row 3 of table A128325.

Original entry on oeis.org

1, 1, 5, 30, 200, 1435, 10900, 86799, 720074, 6196295, 55135043, 506125404, 4784680169, 46516469860, 464550190798, 4761343733469, 50044839978614, 539051253692777, 5946806890025709, 67156408547628636, 775935817487472046
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2007

Keywords

Crossrefs

Cf. A030266; A128325 (table), A128326 (row 1), A128327 (row 2), A128329 (main diagonal).

Programs

  • PARI
    {a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,3,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}

Formula

G.f.: A(x) = 1 + G(G(G(G(G(x))))) = B(G(x)), where B(x) is the g.f. of A128327 and G(x) = x + x*G(G(x)) is the g.f. of A030266.

A030266 Shifts left under COMPOSE transform with itself.

Original entry on oeis.org

0, 1, 1, 2, 6, 23, 104, 531, 2982, 18109, 117545, 808764, 5862253, 44553224, 353713232, 2924697019, 25124481690, 223768976093, 2062614190733, 19646231085928, 193102738376890, 1956191484175505, 20401540100814142, 218825717967033373, 2411606083999341827
Offset: 0

Views

Author

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 104*x^6 + ...
A(A(x)) = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 531*x^6 + ...
		

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember;
          unapply(`if`(n=0, x,
          A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x)
        end:
    a:= n-> coeff(A(n)(x),x,n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 24 2012
  • Mathematica
    A[0] = Identity; A[n_] := A[n] = Function[x, Evaluate[A[n-1][x]+Coefficient[A[n-1][A[n-1][x]], x, n]*x^(n+1)]]; a[n_] := Coefficient[A[n][x], x, n]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    CoefficientList[Nest[x + x (# /. x -> #) &, O[x], 30], x] (* Vladimir Reshetnikov, Aug 08 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Mar 10 2007
    
  • PARI
    {a(n)=local(A=sum(i=1,n-1,a(i)*x^i)+x*O(x^n));if(n==0,0,polcoeff((1+A)^n/n,n-1))} \\ Paul D. Hanna, Nov 18 2008
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+m,k)/(n+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    {a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
    for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(2*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 15 2010

Formula

G.f. A(x) satisfies the functional equation: A(x)-x = x*A(A(x)). - Paul D. Hanna, Aug 04 2002
G.f.: A(x/(1+A(x))) = x. - Paul D. Hanna, Dec 04 2003
Suppose the functions A=A(x), B=B(x), C=C(x), etc., satisfy: A = 1 + xAB, B = 1 + xABC, C = 1 + xABCD, D = 1 + xABCDE, etc., then B(x)=A(x*A(x)), C(x)=B(x*A(x)), D(x)=C(x*A(x)), etc., where A(x) = 1 + x*A(x)*A(x*A(x)) and x*A(x) is the g.f. of this sequence (see table A128325). - Paul D. Hanna, Mar 10 2007
G.f. A(x) = x*F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+1)) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007
a(n) = [x^(n-1)] [1 + A(x)]^n/n for n>=1 with a(0)=0; i.e., a(n) equals the coefficient of x^(n-1) in [1+A(x)]^n/n for n >= 1. - Paul D. Hanna, Nov 18 2008
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,k).
(End)
G.f. satisfies:
* A(x) = x*exp( Sum_{m>=0} {d^m/dx^m A(x)^(m+1)/x} * x^(m+1)/(m+1)! );
* A(x) = x*exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^m/y^m}*x^k]*x^m/m );
which are equivalent. - Paul D. Hanna, Dec 15 2010
The g.f. satisfies:
log(A(x)/x) = A(x) + {d/dx A(x)^2/x}*x^2/2! + {d^2/dx^2 A(x)^3/x}*x^3/3! + {d^3/dx^3 A(x)^4/x}*x^4/4! + ... - Paul D. Hanna, Dec 15 2010

A128326 G.f.: A(x) = 1 + G(G(G(x))), where G(x) = x + x*G(G(x)) is the g.f. of A030266.

Original entry on oeis.org

1, 1, 3, 12, 57, 305, 1787, 11269, 75629, 535960, 3987913, 31021693, 251445581, 2117993712, 18499513147, 167246537937, 1562556275281, 15066167302802, 149737897716757, 1532313152898208, 16129331500727047
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2007

Keywords

Comments

Equals row 1 of table A128325.

Crossrefs

Cf. A030266; A128325 (table), A128327 (row 2), A128328 (row 3), A128329 (main diagonal).

Programs

  • PARI
    {a(n)=local(A=1+x,B);for(i=0,n,A = 1 + x*A * subst(A,x,x*A+x*O(x^n))); B=A;B=subst(B,x,x*A+x*O(x^n));polcoeff(B,n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A = 1/subst(1-x*A, x, x/(1-x*A +x*O(x^n))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = x/(1 - A( x/(1 - A(x)) )) when offset is taken to be 1. - Paul D. Hanna, Dec 20 2014

A141141 The main diagonal in the table of coefficients of iterations of G(x), where G(x) = x + x*G(G(x)) = g.f. of A030266.

Original entry on oeis.org

1, 2, 12, 114, 1435, 22219, 406441, 8559852, 203792337, 5409449156, 158350300141, 5066765087000, 175908765569628, 6585443884172129, 264428161094825151, 11335716352419699208, 516717363793695685925, 24955728581736822645816
Offset: 1

Views

Author

Paul D. Hanna, Jun 10 2008

Keywords

Examples

			a(n) = the n-th coefficient of the n-th iteration of G(x):
[x] G(x) = 1, [x^2] G(G(x)) = 2, [x^3] G(G(G(x))) = 12, etc.
The initial iterations (n=1..7) of G(x) are:
n=1: x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 104*x^6 + 531*x^7 +...
n=2: x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 531*x^6 + 2982*x^7 +...
n=3: x + 3*x^2 + 12*x^3 + 57*x^4 + 305*x^5 + 1787*x^6 + 11269*x^7 +...
n=4: x + 4*x^2 + 20*x^3 + 114*x^4 + 712*x^5 + 4772*x^6 + 33896*x^7 +...
n=5: x + 5*x^2 + 30*x^3 + 200*x^4 + 1435*x^5 + 10900*x^6 + 86799*x^7+...
n=6: x + 6*x^2 + 42*x^3 + 321*x^4 + 2608*x^5 + 22219*x^6 + 196910*x^7+...
n=7: x + 7*x^2 + 56*x^3 + 483*x^4 + 4389*x^5 + 41531*x^6 + 406441*x^7+...
Notice the main diagonal of the table formed from these coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x,B); if(n<1, 0, for(i=1, n, A=serreverse(x/(1+A +x*O(x^n)))); B=x;for(i=1,n,B=subst(A,x,B+x*O(x^n)));polcoeff(B,n))}
Showing 1-6 of 6 results.