Original entry on oeis.org
1, 1, 4, 30, 321, 4389, 72512, 1399755, 30865353, 764755508, 21024535960, 634924059276, 20890221475598, 743727414390456, 28484480606420928, 1167761832049224515, 51022550712426870397, 2366859765773183488674
Offset: 0
-
{a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,n,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}
Original entry on oeis.org
1, 1, 4, 20, 114, 712, 4772, 33896, 253102, 1975610, 16054568, 135413280, 1182664740, 10675334958, 99437919664, 954581258020, 9433732288486, 95883201181772, 1001411775057322, 10738668800872594, 118151145186400408
Offset: 0
-
{a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,2,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}
Original entry on oeis.org
1, 1, 5, 30, 200, 1435, 10900, 86799, 720074, 6196295, 55135043, 506125404, 4784680169, 46516469860, 464550190798, 4761343733469, 50044839978614, 539051253692777, 5946806890025709, 67156408547628636, 775935817487472046
Offset: 0
-
{a(n)=local(A=1+x,B);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n))); B=A;for(i=1,3,B=subst(B,x,x*A+x*O(x^n)));polcoeff(B,n)}
A030266
Shifts left under COMPOSE transform with itself.
Original entry on oeis.org
0, 1, 1, 2, 6, 23, 104, 531, 2982, 18109, 117545, 808764, 5862253, 44553224, 353713232, 2924697019, 25124481690, 223768976093, 2062614190733, 19646231085928, 193102738376890, 1956191484175505, 20401540100814142, 218825717967033373, 2411606083999341827
Offset: 0
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 104*x^6 + ...
A(A(x)) = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 531*x^6 + ...
-
A:= proc(n) option remember;
unapply(`if`(n=0, x,
A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x)
end:
a:= n-> coeff(A(n)(x),x,n):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 24 2012
-
A[0] = Identity; A[n_] := A[n] = Function[x, Evaluate[A[n-1][x]+Coefficient[A[n-1][A[n-1][x]], x, n]*x^(n+1)]]; a[n_] := Coefficient[A[n][x], x, n]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
CoefficientList[Nest[x + x (# /. x -> #) &, O[x], 30], x] (* Vladimir Reshetnikov, Aug 08 2019 *)
-
{a(n)=local(A=1+x);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Mar 10 2007
-
{a(n)=local(A=sum(i=1,n-1,a(i)*x^i)+x*O(x^n));if(n==0,0,polcoeff((1+A)^n/n,n-1))} \\ Paul D. Hanna, Nov 18 2008
-
{a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+m,k)/(n+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
-
{a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(2*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 15 2010
A128326
G.f.: A(x) = 1 + G(G(G(x))), where G(x) = x + x*G(G(x)) is the g.f. of A030266.
Original entry on oeis.org
1, 1, 3, 12, 57, 305, 1787, 11269, 75629, 535960, 3987913, 31021693, 251445581, 2117993712, 18499513147, 167246537937, 1562556275281, 15066167302802, 149737897716757, 1532313152898208, 16129331500727047
Offset: 0
-
{a(n)=local(A=1+x,B);for(i=0,n,A = 1 + x*A * subst(A,x,x*A+x*O(x^n))); B=A;B=subst(B,x,x*A+x*O(x^n));polcoeff(B,n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A = 1/subst(1-x*A, x, x/(1-x*A +x*O(x^n))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A141141
The main diagonal in the table of coefficients of iterations of G(x), where G(x) = x + x*G(G(x)) = g.f. of A030266.
Original entry on oeis.org
1, 2, 12, 114, 1435, 22219, 406441, 8559852, 203792337, 5409449156, 158350300141, 5066765087000, 175908765569628, 6585443884172129, 264428161094825151, 11335716352419699208, 516717363793695685925, 24955728581736822645816
Offset: 1
a(n) = the n-th coefficient of the n-th iteration of G(x):
[x] G(x) = 1, [x^2] G(G(x)) = 2, [x^3] G(G(G(x))) = 12, etc.
The initial iterations (n=1..7) of G(x) are:
n=1: x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 104*x^6 + 531*x^7 +...
n=2: x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 531*x^6 + 2982*x^7 +...
n=3: x + 3*x^2 + 12*x^3 + 57*x^4 + 305*x^5 + 1787*x^6 + 11269*x^7 +...
n=4: x + 4*x^2 + 20*x^3 + 114*x^4 + 712*x^5 + 4772*x^6 + 33896*x^7 +...
n=5: x + 5*x^2 + 30*x^3 + 200*x^4 + 1435*x^5 + 10900*x^6 + 86799*x^7+...
n=6: x + 6*x^2 + 42*x^3 + 321*x^4 + 2608*x^5 + 22219*x^6 + 196910*x^7+...
n=7: x + 7*x^2 + 56*x^3 + 483*x^4 + 4389*x^5 + 41531*x^6 + 406441*x^7+...
Notice the main diagonal of the table formed from these coefficients.
-
{a(n)=local(A=x,B); if(n<1, 0, for(i=1, n, A=serreverse(x/(1+A +x*O(x^n)))); B=x;for(i=1,n,B=subst(A,x,B+x*O(x^n)));polcoeff(B,n))}
Showing 1-6 of 6 results.
Comments