A128366 a(n) = least k such that the remainder when 26^k is divided by k is n.
5, 3, 23, 6, 7, 10, 19, 9, 17, 18, 15, 92, 18881, 319, 36091, 20, 203, 94, 49, 21, 42395, 42, 17553, 326, 106709, 27, 2062919, 36, 14099, 34, 35, 46, 850984699, 214, 5847, 44, 341, 58, 377, 106, 105, 634, 301265879, 158, 93107, 90, 759, 176, 187, 69, 685, 78
Offset: 1
Links
- Zhuorui He, Table of n, a(n) for n = 1..198 (first 152 terms from Robert G. Wilson v).
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 with -1 for large entries where a(n) has not yet been found
Crossrefs
Programs
-
Mathematica
t = Table[0, {10000}]; k = 1; lst = {}; While[k < 1200000000, a = PowerMod[26, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]; If[a + 1 == k, AppendTo[lst, a]; Print@lst]]; k++ ]; lst (* Robert G. Wilson v, Jun 30 2009 *)
Extensions
a(27)-a(52) from Robert G. Wilson v, Jun 30 2009
Comments