cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128424 a(n) = floor(sqrt(a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))), a(1)=1, a(2)=3.

Original entry on oeis.org

1, 3, 3, 5, 7, 10, 14, 20, 29, 42, 61, 89, 130, 190, 278, 407, 596, 873, 1279, 1874, 2746, 4024, 5897, 8642, 12665, 18561, 27202, 39866, 58426, 85627, 125492, 183917, 269543, 395034, 578950, 848492, 1243525, 1822474, 2670965, 3914489, 5736962
Offset: 1

Views

Author

Zak Seidov, May 04 2007

Keywords

Comments

For a triangle with sides a(n-1) and a(n-2) and a 120-degree angle between them, a(n) is the floor of the value of the third side.
a(n) = A020711(n-4) for 4 <= n <= 41. - Georg Fischer, Nov 02 2018

Crossrefs

Programs

  • Mathematica
    a[1]=1;a[2]=3;a[n_]:=a[n]=Floor[Sqrt[a[n-1]^2+a[n-2]^2+a[n-1]*a[n-2]]] Table[a[n],{n,45}]
    RecurrenceTable[{a[1]==1,a[2]==3,a[n]==Floor[Sqrt[a[n-1]^2+a[n-2]^2+ a[n-1]*a[n-2]]]},a,{n,50}] (* Harvey P. Dale, Oct 01 2018 *)

Formula

Conjectures from Colin Barker, Nov 03 2018: (Start)
G.f.: x*(1 + x - 2*x^2 + x^3 - 2*x^4 + x^5 - x^6) / ((1 - x)*(1 - x - x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>7.
(End)