A128433 Triangle, read by rows, T(n,k) = numerator of the maximum of the k-th Bernstein polynomial of degree n; denominator is A128434.
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 27, 3, 27, 1, 1, 256, 216, 216, 256, 1, 1, 3125, 80, 5, 80, 3125, 1, 1, 46656, 37500, 34560, 34560, 37500, 46656, 1, 1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1, 1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 1, 1; 1, 4, 4, 1; 1, 27, 3, 27, 1; 1, 256, 216, 216, 256, 1; 1, 3125, 80, 5, 80, 3125, 1; 1, 46656, 37500, 34560, 34560, 37500, 46656, 1; 1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1; 1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Bernstein Polynomial
Programs
-
Mathematica
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n]; T[n_, k_]= Numerator[B[n, k]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
Sage
def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n def T(n,k): return numerator(B(n,k)) flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021