cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128433 Triangle, read by rows, T(n,k) = numerator of the maximum of the k-th Bernstein polynomial of degree n; denominator is A128434.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 27, 3, 27, 1, 1, 256, 216, 216, 256, 1, 1, 3125, 80, 5, 80, 3125, 1, 1, 46656, 37500, 34560, 34560, 37500, 46656, 1, 1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1, 1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 03 2007

Keywords

Examples

			Triangle begins as:
  1;
  1,        1;
  1,        1,        1;
  1,        4,        4,      1;
  1,       27,        3,     27,        1;
  1,      256,      216,    216,      256,        1;
  1,     3125,       80,      5,       80,     3125,     1;
  1,    46656,    37500,  34560,    34560,    37500, 46656,        1;
  1,   823543,     5103, 590625,       35,   590625,  5103,   823543,        1;
  1, 16777216, 13176688,   1792, 11200000, 11200000,  1792, 13176688, 16777216, 1;
		

Crossrefs

Programs

  • Mathematica
    B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
    T[n_, k_]= Numerator[B[n, k]];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
  • Sage
    def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
    def T(n,k): return numerator(B(n,k))
    flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021

Formula

T(n,k)/A128434(n,k) = Binomial(n,k) * k^k * (n-k)^(n-k) / n^n.
For n>0: Sum_{k=0..n} T(n,k)/A128434(n,k) = A090878(n)/A036505(n-1).
T(n,n-k) = T(n,k).
T(n,0) = 1.
for n>0: T(n,1)/A128434(n,1) = A000312(n-1)/A000169(n).