A128438 a(n) = floor((denominator of H(n))/n), where H(n) = Sum_{k=1..n} 1/k, the n-th harmonic number.
1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 226893, 4084080, 775975, 246341, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
Offset: 1
Keywords
Examples
The sequence denominator(H(n))/n begins 1, 1, 2, 3, 12, 10/3, 20, 35, 280, 252, 2520, 2310, ..., so the present sequence begins 1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2310
Programs
-
Maple
H:=n->sum(1/k,k=1..n): a:=n->floor(denom(H(n))/n): seq(a(n),n=1..34); # Emeric Deutsch, Mar 25 2007
-
Mathematica
seq = {}; s = 0; Do[s += 1/n; AppendTo[seq, Floor[Denominator[s]/n]], {n, 1, 30}]; seq (* Amiram Eldar, Sep 18 2021 *) Table[Floor[Denominator[HarmonicNumber[n]]/n],{n,40}] (* Harvey P. Dale, Nov 24 2023 *)
-
Python
from sympy import harmonic def A128438(n): return harmonic(n).q//n # Chai Wah Wu, Sep 27 2021
Extensions
More terms from Emeric Deutsch, Mar 25 2007
Comments