cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128438 a(n) = floor((denominator of H(n))/n), where H(n) = Sum_{k=1..n} 1/k, the n-th harmonic number.

Original entry on oeis.org

1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 226893, 4084080, 775975, 246341, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
Offset: 1

Views

Author

Leroy Quet, Mar 03 2007

Keywords

Comments

This is very similar to A027611, which is a different sequence. - N. J. A. Sloane, Nov 21 2008
Indices where a(n) differs from A027611 are terms of A074791. - Gary Detlefs, Sep 03 2011

Examples

			The sequence denominator(H(n))/n begins 1, 1, 2, 3, 12, 10/3, 20, 35, 280, 252, 2520, 2310, ..., so the present sequence begins 1, 1, 2, 3, 12, 3, 20, 35, 280, 252, 2520, 2310, ...
		

Crossrefs

Programs

  • Maple
    H:=n->sum(1/k,k=1..n): a:=n->floor(denom(H(n))/n): seq(a(n),n=1..34); # Emeric Deutsch, Mar 25 2007
  • Mathematica
    seq = {}; s = 0; Do[s += 1/n; AppendTo[seq, Floor[Denominator[s]/n]], {n, 1, 30}]; seq (* Amiram Eldar, Sep 18 2021 *)
    Table[Floor[Denominator[HarmonicNumber[n]]/n],{n,40}] (* Harvey P. Dale, Nov 24 2023 *)
  • Python
    from sympy import harmonic
    def A128438(n): return harmonic(n).q//n # Chai Wah Wu, Sep 27 2021

Extensions

More terms from Emeric Deutsch, Mar 25 2007