A128440 Array T(n,k) = floor(k*t^n) where t = golden ratio = (1 + sqrt(5))/2, read by descending antidiagonals.
1, 3, 2, 4, 5, 4, 6, 7, 8, 6, 8, 10, 12, 13, 11, 9, 13, 16, 20, 22, 17, 11, 15, 21, 27, 33, 35, 29, 12, 18, 25, 34, 44, 53, 58, 46, 14, 20, 29, 41, 55, 71, 87, 93, 76, 16, 23, 33, 47, 66, 89, 116, 140, 152, 122, 17, 26, 38, 54, 77, 107, 145, 187, 228, 245, 199
Offset: 1
Examples
Corner: 1 3 4 6 8 9 11 12 2 5 7 10 13 15 18 20 4 8 12 16 21 25 29 33 6 13 20 27 34 41 47 54 11 22 33 44 55 66 77 88 17 35 53 71 89 107 125 143 29 58 87 116 145 174 203 232 46 93 140 187 234 281 328 375
Links
- Michel Marcus, Table of n, a(n) for n = 1..5050 (Antidiagonals n=1..100 of array, flattened).
Programs
-
Mathematica
r = (1 + Sqrt[5])/2; t[k_, n_] := Floor[n*r^k]; Grid[Table[t[k, n], {k, 1, 10}, {n, 1, 20}]] (* Clark Kimberling, Nov 11 2022 *)
-
PARI
T(n,k) = floor(k*quadgen(5)^n); matrix(7, 7, n, k, T(n,k)) \\ Michel Marcus, Nov 14 2022
Formula
T(k,n) = k*F(n-1) + floor(k*t*F(n)), where F=A000045, the Fibonacci numbers.
Comments