A128445 Number of facets of the Alternating Sign Matrix polytope ASM(n).
1, 1, 2, 8, 20, 40, 68, 104, 148, 200, 260, 328, 404, 488, 580, 680, 788, 904, 1028, 1160, 1300, 1448, 1604, 1768, 1940, 2120, 2308, 2504, 2708, 2920, 3140, 3368, 3604, 3848, 4100, 4360, 4628, 4904, 5188, 5480, 5780, 6088, 6404, 6728, 7060, 7400, 7748, 8104
Offset: 0
References
- D. M. Bressoud, Proofs and confirmations: the story of the alternating sign matrix conjecture, MAA Spectrum, 1999.
Links
- Jessica Striker, The alternating sign matrix polytope, arXiv:0705.0998 [math.CO], 2007-2009.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A005130 (number of vertices).
Programs
-
Mathematica
Table[4((n-2)^2+1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{20,8,4},50] (* Harvey P. Dale, Mar 05 2012 *)
-
PARI
a(n)=([0,1,0; 0,0,1; 1,-3,3]^n*[20;8;4])[1,1] \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 4*((n-2)^2 + 1) for n >= 3.
From Harvey P. Dale, Mar 05 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n > 5.
G.f.: (2*x^5+x^4+4*x^3+2*x^2-4*x+1)/(1-x)^3. (End)
Extensions
More terms from Harvey P. Dale, Mar 05 2012
Initial 3 terms and formulas corrected by Ludovic Schwob, Feb 14 2024
Comments