cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128445 Number of facets of the Alternating Sign Matrix polytope ASM(n).

Original entry on oeis.org

1, 1, 2, 8, 20, 40, 68, 104, 148, 200, 260, 328, 404, 488, 580, 680, 788, 904, 1028, 1160, 1300, 1448, 1604, 1768, 1940, 2120, 2308, 2504, 2708, 2920, 3140, 3368, 3604, 3848, 4100, 4360, 4628, 4904, 5188, 5480, 5780, 6088, 6404, 6728, 7060, 7400, 7748, 8104
Offset: 0

Views

Author

Jonathan Vos Post, May 09 2007

Keywords

Comments

The number of vertices (Bressoud) is Product_{j=0..n-1}(3j+1)!/(n+j)!.

References

  • D. M. Bressoud, Proofs and confirmations: the story of the alternating sign matrix conjecture, MAA Spectrum, 1999.

Crossrefs

Cf. A005130 (number of vertices).

Programs

  • Mathematica
    Table[4((n-2)^2+1),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{20,8,4},50] (* Harvey P. Dale, Mar 05 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-3,3]^n*[20;8;4])[1,1] \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*((n-2)^2 + 1) for n >= 3.
From Harvey P. Dale, Mar 05 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n > 5.
G.f.: (2*x^5+x^4+4*x^3+2*x^2-4*x+1)/(1-x)^3. (End)

Extensions

More terms from Harvey P. Dale, Mar 05 2012
Initial 3 terms and formulas corrected by Ludovic Schwob, Feb 14 2024