cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128534 a(n) = Fibonacci(n)*Lucas(n-1).

Original entry on oeis.org

0, 2, 1, 6, 12, 35, 88, 234, 609, 1598, 4180, 10947, 28656, 75026, 196417, 514230, 1346268, 3524579, 9227464, 24157818, 63245985, 165580142, 433494436, 1134903171, 2971215072, 7778742050, 20365011073, 53316291174, 139583862444, 365435296163, 956722026040, 2504730781962
Offset: 0

Views

Author

Axel Harvey, Mar 08 2007

Keywords

Comments

Generally, F(n)*L(n+k) = F(2*n + k) + F(k)*(-1)^(n+1). If k=0 the sequence is A001906; if k=1 it is A081714.
a(n) is the maximum area of a quadrilateral with lengths of sides in order F(n), F(n), L(n-1), L(n-1) for n>1. - J. M. Bergot, Jan 28 2016
Can be obtained (up to signs) by setting x = F(n)/F(n+1) in g.f. for Lucas numbers - see Pongsriiam. - N. J. A. Sloane, Mar 23 2017

Examples

			a(5) = 35 because F(5)*L(4) = 5*7.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n)*Lucas(n-1): n in [0..30]]; // G. C. Greubel, Dec 21 2017
  • Maple
    seq(combinat:-fibonacci(2*n-1)+(-1)^(n+1),n=0..50); # Robert Israel, Jan 28 2016
  • Mathematica
    Table[Fibonacci[n] LucasL[n - 1], {n, 0, 31}] (* Michael De Vlieger, Jan 29 2016 *)
  • PARI
    concat( 0, Vec(-x*(-2+3*x)/((1+x)*(x^2-3*x+1)) + O(x^40))) \\ Michel Marcus, Jan 28 2016
    

Formula

a(n) = F(2*n - 1) + (-1)^(n+1), assuming F(0)=0 and L(0)=2.
From R. J. Mathar, Apr 16 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(2-3*x)/((1+x)*(x^2-3*x+1)). (End)
a(n) = (2^(-1-n)*(-5*(-1)^n*2^(1+n) - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))))/5. - Colin Barker, Apr 05 2016
a(n+1) = A081714(n) + 2*(-1)^n. - A.H.M. Smeets, Feb 26 2022

Extensions

More terms from Michel Marcus, Jan 28 2016