A128534 a(n) = Fibonacci(n)*Lucas(n-1).
0, 2, 1, 6, 12, 35, 88, 234, 609, 1598, 4180, 10947, 28656, 75026, 196417, 514230, 1346268, 3524579, 9227464, 24157818, 63245985, 165580142, 433494436, 1134903171, 2971215072, 7778742050, 20365011073, 53316291174, 139583862444, 365435296163, 956722026040, 2504730781962
Offset: 0
Examples
a(5) = 35 because F(5)*L(4) = 5*7.
Links
- Robert Israel, Table of n, a(n) for n = 0..2370
- Prapanpong Pongsriiam, Integral Values of the Generating Functions of Fibonacci and Lucas Numbers, College Math. J., 48 (No. 2 2017), pp 97ff.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Magma
[Fibonacci(n)*Lucas(n-1): n in [0..30]]; // G. C. Greubel, Dec 21 2017
-
Maple
seq(combinat:-fibonacci(2*n-1)+(-1)^(n+1),n=0..50); # Robert Israel, Jan 28 2016
-
Mathematica
Table[Fibonacci[n] LucasL[n - 1], {n, 0, 31}] (* Michael De Vlieger, Jan 29 2016 *)
-
PARI
concat( 0, Vec(-x*(-2+3*x)/((1+x)*(x^2-3*x+1)) + O(x^40))) \\ Michel Marcus, Jan 28 2016
Formula
a(n) = F(2*n - 1) + (-1)^(n+1), assuming F(0)=0 and L(0)=2.
From R. J. Mathar, Apr 16 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(2-3*x)/((1+x)*(x^2-3*x+1)). (End)
a(n) = (2^(-1-n)*(-5*(-1)^n*2^(1+n) - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))))/5. - Colin Barker, Apr 05 2016
a(n+1) = A081714(n) + 2*(-1)^n. - A.H.M. Smeets, Feb 26 2022
Extensions
More terms from Michel Marcus, Jan 28 2016
Comments