A128541 Triangle, A097806 * A127647, read by rows.
1, 1, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 0, 3, 5, 0, 0, 0, 0, 5, 8, 0, 0, 0, 0, 0, 8, 13, 0, 0, 0, 0, 0, 0, 13, 21, 0, 0, 0, 0, 0, 0, 0, 21, 34, 0, 0, 0, 0, 0, 0, 0, 0, 34, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 233
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 0, 1, 2; 0, 0, 2, 3; 0, 0, 0, 3, 5; 0, 0, 0, 0, 5, 8; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[k eq n select Fibonacci(n+1) else k eq n-1 select Fibonacci(n) else 0: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 11 2019
-
Mathematica
Table[If[k==n, Fibonacci[n+1], If[k==n-1, Fibonacci[n], 0]], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
-
PARI
T(n,k) = if(k==n, fibonacci(n+1), if(k==n-1, fibonacci(n), 0)); \\ G. C. Greubel, Jul 11 2019
-
Sage
def T(n, k): if (k==n): return fibonacci(n+1) elif (k==n-1): return fibonacci(n) else: return 0 [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jul 11 2019
Extensions
More terms added by G. C. Greubel, Jul 11 2019
Comments