cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128542 a(n) = ((2n)^(2n) - 1)/((2n+1)*(2n-1)).

Original entry on oeis.org

0, 1, 17, 1333, 266305, 101010101, 62350352785, 56984650387477, 72340172838076673, 121815504877079063701, 262801002506265664160401, 706890015246831381773595701, 2319540481478754999041880822337, 9120177155862455275254332279111413
Offset: 0

Views

Author

Alexander Adamchuk, May 08 2007

Keywords

Comments

p divides a(p-1) for prime p>3.

Crossrefs

Cf. A048861 = n^n - 1.

Programs

  • GAP
    Concatenation([0], List([1..20], n-> ((2*n)^(2*n)-1)/(4*n^2 -1) )); # G. C. Greubel, Jul 11 2019
  • Magma
    [0] cat [((2*n)^(2*n)-1)/(4*n^2 -1): n in [1..20]]; // G. C. Greubel, Jul 11 2019
    
  • Mathematica
    Join[{0}, Table[((2n)^(2n)-1)/(4n^2-1),{n,1,20}]]
  • PARI
    A128542(n)=((n+=n)^n-1)/(n^2-1) \\ M. F. Hasler, Oct 31 2014
    
  • Sage
    [0]+[((2*n)^(2*n)-1)/(4*n^2 -1) for n in (1..20)] # G. C. Greubel, Jul 11 2019
    

Formula

a(n) = ((2n)^(2n)-1)/((2n+1)*(2n-1)).
a(n) = A048861(2n)/((2n+1)*(2n-1)).
a(n) = A023037(2n)/(2n+1).
a(n) = A089815(2n-2).

Extensions

a(0)=0 added by M. F. Hasler, Oct 31 2014