A128549 Difference between triangular number and next perfect square.
3, 1, 3, 6, 1, 4, 8, 13, 4, 9, 15, 3, 9, 16, 1, 8, 16, 25, 6, 15, 25, 3, 13, 24, 36, 10, 22, 35, 6, 19, 33, 1, 15, 30, 46, 10, 26, 43, 4, 21, 39, 58, 15, 34, 54, 8, 28, 49, 71, 21, 43, 66, 13, 36, 60, 4, 28, 53, 79, 19, 45, 72, 9, 36, 64, 93, 26, 55, 85, 15, 45, 76, 3, 34, 66, 99, 22
Offset: 1
Keywords
Examples
a(1)=2^2-1(1+1)/2=3, a(2)=2^2-2(2+1)/2=1, a(3)=3^2-3(3+1)/2=3, a(3)=4^2-4(4+1)/2=6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> (floor(sqrt(n*(n+1)/2))+1)^2-n*(n+1)/2: map(f, [$1..100]); # Robert Israel, Jan 21 2020
-
Mathematica
Table[(Floor[Sqrt[n(n+1)/2]]+1)^2-n(n+1)/2,{n,100}] (Floor[Sqrt[#]]+1)^2-#&/@Accumulate[Range[100]] (* Harvey P. Dale, Oct 15 2014 *)
-
Python
from math import isqrt def A128549(n): return (isqrt(m:=n*(n+1)>>1)+1)**2-m # Chai Wah Wu, Jun 01 2024
Formula
a(n) = (floor(sqrt(n(n+1)/2))+1)^2-n(n+1)/2.
Comments